

Acoustic Testing Laboratory
College of Science & Technology
The University of Salford

Salford, Greater Manchester M5 4WT, United Kingdom

T: +44 (0) 161 295 4615 F: +44 (0) 161 295 4456 E: d.j.mccaul@salford.ac.uk

TEST REPORT No: 4164-3828 DATE OF ISSUE: 04 March 2019

Page 1 of 10

BS EN ISO 354:2003

ACOUSTICS – MEASUREMENT OF SOUND ABSORPTION IN A REVERBERATION ROOM

CLIENT: Forbo Flooring UK

High Holborn Road

Ripley

Derbyshire

DE5 3NT

JOB NUMBER: ACOUS/04164

MANUFACTURER: Client

MODEL: Flotex Sheet, lot 4672

TYPE: Type A Mounting

DATE ORDER RECEIVED: 14 February 2019

DATE OF TEST: 25 February 2019

D Wong-McSweeney

S M Furlong

Laboratory Manager

Signed:.....

Specialist Acoustics Technician

<u>1</u> <u>TEST SAMPLES</u>

1.1 Description of Test Samples

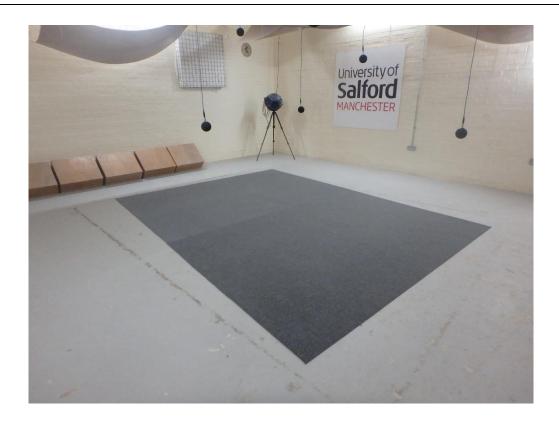
Test Reference: 4164-3828

Sample Reference: "Flotex Sheet, lot 4672"

Sample Description: Carpet - Type A Mounting

A sample, cut from the roll supplied by the client, was laid directly onto the concrete floor of the reverberation room.

Sample area: $4002 \times 2970 \text{ mm}$


Thickness: 4.0 mm

Mass per unit area: 1.8 kg/m²

1.2 Photographs

2 <u>DESCRIPTION OF TEST PROCEDURE</u>

2.1 Description of Test Facility

The tests were carried out in the large reverberation room at the University of Salford. The room has been designed with hard surfaces and non-parallel walls to give long empty room reverberation times with uniform decays. It has the shape of a truncated wedge. In addition 11 plywood panels, each panel 1.22 m × 2.44 m, were hung in the room to improve the diffusivity of the sound field. The test sample was placed in the centre of the floor. The excitation signal comprised wide band random noise played into the room via a loudspeaker system mounted in a cabinet facing a corner. The sound was monitored at each of 6 microphone positions. The room is 7.4 m long × ~6.6 m wide × 4.5 m high with a volume of 221 m³ and a total surface area of 224 m². The volume of the room permits a maximum sample size of 12.79 m² to be tested, in accordance with Clause 6.2.1.1 in BS EN ISO 354: 2003, "Acoustics - Measurement of sound absorption in a reverberation room".

2.2 Test Procedure

The procedure followed that detailed in BS EN ISO 354. Measurements were made on the rate of decay of sound in the test chamber with and without the sample in place. The frequency range from 100 Hz to 5000 Hz was covered in one-third octave bands. An average reverberation time was taken from five decays at each of six microphone positions for each of two loudspeaker positions (i.e. 60 decays per third octave band). The decays were produced by exciting the room with amplified wide band random noise and stopping the excitation once the chamber became saturated. The time taken for the sound to decay by a given amount is measured and extrapolated to give the reverberation time. In practice this was determined by sampling the decaying sound field on a one-third octave band frequency analyser and storing the spectrum in a computer every 32 milliseconds. The reverberation time was obtained from the arithmetically averaged decays at each frequency. The measurements with and without the sample in the room were carried out consecutively to avoid significant changes in relative humidity and temperature that influence air absorption at higher frequencies.

2.3 Calculation

The random incidence sound absorption coefficients were determined from the measured data by means of the equations below:

$$\alpha_{\rm s} = \frac{A_{\rm T}}{S}$$

Where

 α_s is the absorption coefficient of the sample

S is the area covered by the test specimen (m^2)

 $A_{\rm T}$ is the equivalent sound absorption area of the test specimen (m²)

$$A_T = A_2 - A_1 = 55.3V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1}\right) - 4V(m_2 - m_1)$$

 A_1 is the equivalent sound absorption area of the empty reverberation room (m²).

 A_2 is the equivalent sound absorption area of the room reverberation containing the test specimen (m²).

V is the volume, in cubic metres, of the empty reverberation room:

 c_1 is the propagation speed of sound at air temperature t_1 ;

 c_2 is the propagation speed of sound at air temperature t_2 ;

 T_1 is the mean reverberation times of the empty reverberation room in each frequency band (sec).

 T_2 is the mean reverberation times of the reverberation room containing the test specimen in each frequency band (sec)

 m_1 is the power attenuation, in reciprocal metres, using the climatic conditions that have been presented in the empty reverberation room.

 m_2 is the power attenuation, in reciprocal metres, using the climatic conditions that have been presented in the reverberation room containing the test specimen.

The single-number rating, α_w , has been calculated in accordance with BS EN ISO 11654:1997.

(No correction is applied for the absorption of the surface covered by the test sample)

3 EQUIPMENT

	Departmental Record No
Norwegian Electronics 1/3 octave band real time analyser type 850 with in-built random noise generator	RTA3-07 to 12
Quad 510 power amplifier	PA7
$2 \times Norsonic Dodecahedron Loudspeakers$	LS10-LS11
$4\times Br\ddot{u}el$ & Kjær random incidence condenser microphone type 4166 in the receiving room	M8, M9 M18, M19
$2\times G.R.A.S.$ random incidence condenser microphones type 40AP in the receiving room	M20, M31
Environmental sensor data logger, hygrometers and barometer	HL1, HG1, HG2, BM2
Norsonic Sound Calibrator type 1251	C8
Toshiba TECRA R850 119 laptop computer and related peripheral equipment (network switch, printer, monitor etc.)	RTA3-00
Yamaha GQ1031BII graphic equalizer	GEQ1

Reverberant room volume

Rel. humidity [% \pm 3.0]

<u>4</u> <u>RESULTS</u>

The random incidence sound absorption coefficients are given in the table(s) overleaf.

 221 m^3

Sample size	4002 × 2970 m	nm
Sample thickness	4.0 mm	
	Sample out	Sample in
Temperature [°C \pm 0.3]	20.7	20.8

Atm. Pressure [kPa ± 0.2] 103.2 103.2

The results here presented relate only to the items tested and described in this report.

36.0

35.0

BS EN ISO 354:2003

Acoustics - Measurement of absorption in a reverberation room

Client: Forbo Flooring UK

High Holborn Road, Ripley, Derbyshire,

DE5 3NT

Product Identification: Flotex Sheet, lot 4672
Description of Sample: Carpet - Type A Mounting

Room Volume: 221 m³ Location: Acoustic Transmission Suite Sample Size: 11.89 m² Test Room Large reverberation Room

Sample Thickness: 4.0 mm Condition: Clean

Sample Out Sample In

Temperature 20.7 $^{\circ}$ C Temperature 20.8 $^{\circ}$ C Relative Humidity 36.0 $^{\circ}$ 6 Relative Humidity 35.0 $^{\circ}$ 6 Static Pressure 103.2 kPa Static Pressure 103.2 kPa

Random Incidence Sound Absorption Coefficient

Frequency	T_{1}	T_2	α_{ς}
[Hz]	[s]	[s]	as
100	4.30	4.50	-0.03
125	4.63	4.50	0.02
160	3.30	3.32	0.00
200	2.96	2.94	0.01
250	3.20	3.18	0.01
315	3.66	3.57	0.02
400	3.73	3.67	0.01
500	4.10	3.90	0.04
630	4.07	3.87	0.04
800	4.24	3.92	0.06
1000	4.08	3.71	0.07
1250	3.89	3.43	0.10
1600	3.73	3.13	0.15
2000	3.37	2.75	0.20
2500	2.97	2.30	0.29
3150	2.56	2.03	0.29
4000	2.03	1.70	0.27
5000	1.66	1.45	0.24

Test reference: 4164-3828 Date: 25 February 2019

University of Salford, School of Computing Science & Engineering

BS EN ISO 354:2003

Acoustics - Measurement of absorption in a reverberation room

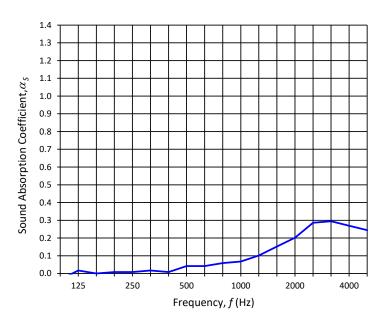
Client: Forbo Flooring UK

High Holborn Road, Ripley, Derbyshire,

DE5 3NT

Product Identification: Flotex Sheet, lot 4672
Description of Sample: Carpet - Type A Mounting

Room Volume: 221 m³ Location: Acoustic Transmission Suite Sample Size: 11.89 m² Test Room Large reverberation Room


Sample Thickness: 4.0 mm Condition: Clean

Sample Out Sample In

Temperature20.7 °CTemperature20.8 °CRelative Humidity36.0 %Relative Humidity35.0 %Static Pressure103.2 kPaStatic Pressure103.2 kPa

Random Incidence Sound Absorption Coefficient

Frequency	α_{S}
[Hz]	۵,5
100	-0.03
125	0.02
160	0.00
200	0.01
250	0.01
315	0.02
400	0.01
500	0.04
630	0.04
800	0.06
1000	0.07
1250	0.10
1600	0.15
2000	0.20
2500	0.29
3150	0.29
4000	0.27
5000	0.24

Signed:

Test reference: 4164-3828 Date: 25 February 2019

University of Salford, School of Computing Science & Engineering

BS EN ISO 11654:1997

Acoustics - Sound absorbers for use in buildings

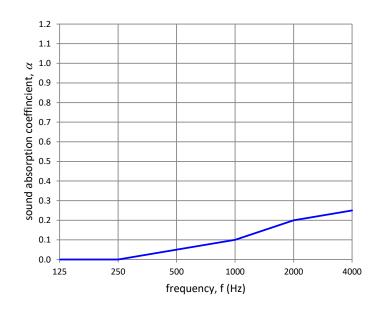
Client: Forbo Flooring UK

High Holborn Road, Ripley, Derbyshire,

DE5 3NT

Product Identification: Flotex Sheet, lot 4672
Description of Sample: Carpet - Type A Mounting

Room Volume: 221 m³ Location: Acoustic Transmission Suite Sample Size: 11.89 m² Test Room Large reverberation Room


Sample Thickness: 4.0 mm Condition: Clean

Sample Out Sample In

Temperature20.7 °CTemperature20.8 °CRelative Humidity36.0 %Relative Humidity35.0 %Static Pressure103.2 kPaStatic Pressure103.2 kPa

Random Incidence Sound Absorption Coefficient

Frequency [Hz]	$lpha_{\it pi}$
125	0.00
250	0.00
500	0.05
1000	0.10
2000	0.20
4000	0.25

 $\alpha_w = 0.10$ (H)

Classification: Not Categorised

Signed:

If a shape indicator is given, it is strongly recommended to use this single-number rating in combination with the complete absorption coefficient curve that can be obtained on request.

Test reference: 4164-3828 Date: 25 February 2019

University of Salford, School of Computing Science & Engineering