
ENVIRONMENTAL PRODUCT DECLARATION

ACOUSTIC VINYL

FORBO FLOORING SYSTEMS / RESILIENT FLOOR COVERING

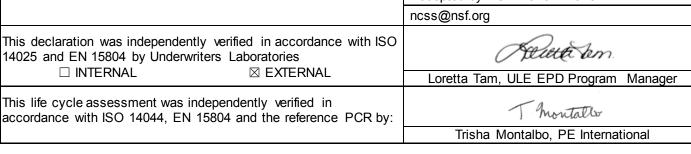
FLOORING SYSTEMS

Achieving lower noise pollution is essential to reducing stress and promoting the well-being, comfort and efficiency of people working or learning. The Forbo acoustic project vinyl collection is the result of more than 30 years of acoustic experience and specific industry knowledge which enables us to deliver the "best in class" acoustic vinyl flooring for every application.

Forbo was the first flooring manufacturer to publish a complete Life Cycle Assessment (LCA) report verified by CML in 2000. In addition, Forbo is now publishing Environmental Product Declarations (EPD) for all products including full LCA reports. This EPD was developed using recognized flooring Product Category Rules and includes additional information to show the impacts on human health and eco-toxicity. By offering the complete story we hope that our stakeholders will be able to use this document as a tool that will translate the environmental performance of acoustic vinyl into true value and benefits for all our customers and stakeholders alike.

For more information visit:

www.forbo-flooring.com



According to ISO 14025 & EN 15804

This declaration is an environmental product declaration in accordance with ISO 14025 and EN15804 that describes the environmental characteristics of the aforementioned product. It promotes the development of sustainable products. This is a certified declaration and all relevant environmental information is disclosed. This EPD may not be comparable to other declarations if they do not comply with ISO 14025, EN 15804 and the reference PCR.

PROGRAM OPERATOR	UL Environment	UL Environment 333 Pfingsten Road			
PROGRAM OF LIVETOR	Northbrook, IL 60611				
	Forbo Flooring B.V.				
DECLARATION HOLDER	Industrieweg 12				
	P.O. Box 13				
	NL-1560 AA Krommenie				
DECLARATION NUMBER	12CA64879.103.1				
DECLARED PRODUCT	Acoustic Vinyl				
REFERENCE PCR	Flooring: Carpet, Resilient, Laminate,	Ceramic, and Wood (NSF 2012)			
DATE OF ISSUE	June 10, 2013				
PERIOD OF VALIDITY	5 Years				
	Product definition and information about building physics				
	Information about basic material and the material's origin				
	Description of the product's manufacture				
CONTENTS OF THE DECLARATION	Indication of product processing				
DECLARATION	Information about the in-use conditions				
	Life cycle assessment results				
	Testing results and verifications				
The PCR review was conduc	eted by:	NSF International			
THE I SIX ICVICW Was collude	ned by.	Accepted by PCR Review Panel			
		ncss@nsf.org			
This declaration was indeper	ndently verified in accordance with ISO				

According to ISO 14025 & EN 15804

Product Definition

Product Classification and Description

This declaration covers a broad range of designs and colors. Acoustic vinyl is a resilient floor covering complying with all the requirements of EN 651 / ISO 11638: Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification. The key raw materials include glass fiber, binders (PVC and calcium carbonate), plasticizer and water-based inks.

Acoustic vinyl is produced by Forbo Flooring and is sold worldwide. This declaration refers to Acoustic vinyl (sheet or tiles).

Figure 1: Schematic build-up of Acoustic Vinyl

Acoustic vinyl is build up in 5 layers:

- 1. Lacquer surface: This layer gives the final protection and stain resistance
- 2. **Wear layer:** This layer gives a first protection to the printed layer. After finishing the product a factory lacquer surface is applied to protect the surface layer
- 3. Printed layer: Design printed with environmentally friendly water-based inks
- 4. Glass fiber: Support of the floor covering
- 5. **Under layer**: Foam backing and compact PVC layer achieving an outstanding impact sound reduction and indentation

According to ISO 14025 & EN 15804

Range of application

Acoustic vinyl is classified in accordance with EN 651 / ISO 11638 to be installed in the following use areas defined in EN-ISO 10874:

Area of application	
Domestic	Class 23
Commercial	Class 34
Industrial	Class 42

Product Standards

The products considered in this EPD have the following technical specifications:

 Meets or exceeds all technical requirements in EN 651 / ISO 11638 Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification

Acoustic vinyl meets the requirements of EN 14041 EN 13501-1 Reaction to fire $B_{fl}-s1/C_{fl}-s1$ EN 13893 Slip resistance DS: $\geq 0,30$ EN 1815 Body voltage <2 kV EN ISO10456 Thermal conductivity 0,25 W/mK

Accreditations

- o ISO 9001 Quality Management System
- o ISO 14001 Environmental Management System
- o OHSAS 18001 Occupational Health and Safety Management Systems
- SA 8000 Social Accountability International

According to ISO 14025 & EN 15804

Delivery Status

Table 1: Specification of delivered product

Characteristics	Nominal Value	Unit
Product thickness	min: 2,55 / max: 4,1	mm
Product Weight	min: 2320 / max: 3581	g/m ²
Rolls Width	2.00 (1,01 for complete step)	Meter
Length	25 (20 for complete step)	
Tiles	min: 5,12 / max: 5,76	m² / box

Material Content

Material Content of the Product

Table 2: Composition of Acoustic Vinvl

Component Material		Availability	Amount [%]	Origin of raw material
Binder	PVC	Nonrenewable – limited	55	Europe
Dilidei	DOTP	Nonrenewable - limited	26	Europe
Filler	Calcium Carbonate	Abundant mineral	14	Europe
Stabilizer	Ca/Zn	Nonrenewable - limited	1	Europe
Reinforcement	Glass fibers	Nonrenewable - limited	2	Europe
Additives	Various chemicals	Nonrenewable - limited	1.5	Europe
Finish	Various chemicals	Nonrenewable - limited	0.5	Europe

Production of Main Materials

PVC: Polyvinyl chloride is obtained by polymerization of the monomer vinyl chloride.

Plasticizer: DOTP, a non-phthalate plasticiser, being the diester of terephthalic acid and the branched-chain 2-ethylhexanol. This colorless viscous liquid used for softening PVC plastics is known for chemical similarity to general purpose phthalates such as DEHP and DINP, but without any negative regulatory pressure.

Stabilizer Ca/Zn: Mixed metal stabilizer made from Calcium and Zinc stearate. It is used to avoid PVC degradation during processing at relative high temperature.

Calcium carbonate: An abundant mineral found in all parts of the world as the chief substance in rocks (i.e., marble and limestone). It can be ground to varying particle sizes and is widely used as filler.

Glass fibre: Glass fibre is used as a substrate for floor coverings and provides better dimensional stability.

Various chemicals:

Lacquer: acrylate hybrid dispersion

Titanium dioxide: A white pigment produced from the mineral rutile, a naturally occurring form of titanium dioxide. The production of the pigment is a large-scale chemical process.

According to ISO 14025 & EN 15804

Inks: water-based inks

Production of the Floor Covering

Acoustic vinyl is produced in several stages starting with the impregnation of the glass fiber (consists of filling the glass fiber with a PVC paste) and the rotograwre printing (possibility to deposit different patterns and colors). The next stage is the wear layer gelation with a coating technology (a transparent wear layer on all products). Then the product is put back to deposit a coat of compact reinforcing PVC and a coat of PVC chemical foam. Lacquering is obtained by a UV lacquer (acrylate hybrid dispersion): it's a long term protection which avoids metallization, reduces costs and facilitates maintenance. Inspection is done and edges are cut (trimmings and rejected product are reused). Finally the floor covering is cut to length into rolls or collected to produce tiles (grinding of the back foam and cutting in tiles). The finished product is sent to the warehouse department.

Health, Safety and Environmental Aspects during Production

- o ISO 14001 Environmental Management System
- OHSAS 18001 Occupational Health and Safety Management Systems
- o SA 8000 Social Accountability International

Production Waste

Rejected material and the cuttings of the trimming stage are recycled. Packaging materials are collected separately and externally recycled.

Delivery and Installation of the Floor Covering

Delivery

Worldwide distribution by truck and container ship is considered. On average, every square meter of Acoustic Vinyl is transported as follows:

0	Transport distance 40 t truck	694 km
0	Transport distance 7.5t truck (Fine distribution)	254 km
0	Capacity utilization trucks (including empty runs)	85 %
0	Transport distance Ocean ship	0 km
0	Capacity utilization Ocean ship	48%

Since Acoustic Vinyl is mainly sold in Europe on average there is no significant transport distance for the distribution of Acoustic Vinyl by Ocean ship.

Installation

Because of the specific techniques used during the installation of Acoustic vinyl, 6% (PVC sheet) or 4% (PVC tile) of the material is cut off as installation waste. For installation of acoustic vinyl on the floor : 0.300 kg/m^2 of adhesive is required. Waste during the installation process may be recycled or landfilled.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends using (low) zero emission adhesives for installing Acoustic Vinyl.

According to ISO 14025 & EN 15804

Waste

Waste during the installation process may be recycled or landfilled.

Packaging

Cardboard tubes and packaging paper can be collected separately and should be used in a local recycling process.

Use stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

Cleaning and Maintenance

Level of use	of use Cleaning Process Cleaning Frequency		Consumption of energy and resources
Commercial/Residential	Vacuuming	Twice a week	Electricity
	Wet Cleaning	Once a week	Hot water Neutral detergent

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m², twice a week. This equates to 0.55 kWh/m²*year.
- Once a week wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 3.224 l/m²*year water and 0.04 kg/m²*year detergent. The wet cleaning takes place without power machine usage. Waste water treatment of the arising waste water from cleaning is considered (Data sourced from Forbo GABI model).

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas.

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress. Use protective feet on chairs and tables to reduce scratching. Castor wheels should be suitable for resilient floor coverings.

According to ISO 14025 & EN 15804

Health Aspects During Usage

Acoustic Vinyl is in compliance with:

- AgBB requirements
- French act Grenelle: A+
- Emission class M1

End of Life

The deconstruction of installed Acoustic Vinyl from the floor is done mechanically and the electrical energy needed for this is estimated to be 0.03 kWh/sqm. This amount of energy is included in the calculations. For the End of Life stage 60% landfill and 40% incineration is taken into account, the average distance to the incineration plant or landfill per lorry is set to 200 km.

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed:

- Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
- Transport Gate to User
- o Installation Stage
- o Use Stage
- o End of Life Stage

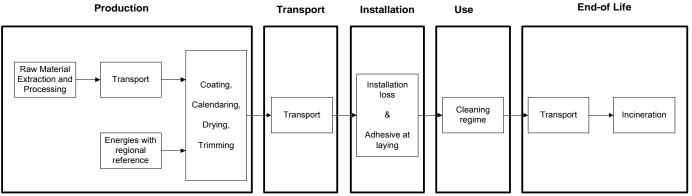


Figure 1: Flow chart of the Life Cycle Assessment

Description of the Declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production

According to ISO 14025 & EN 15804

waste. Transport data on all considered inputs and output material are also considered.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste is fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

Background Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last

According to ISO 14025 & EN 15804

revision of the used data sets took place within the last 10 years.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered.

<u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Reims, France. The GaBi 6 Hydropower dataset has therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

According to ISO 14025 & EN 15804

Life Cycle Inventory Analysis

The total primary energy for one square meter installed Acoustic Vinyl is presented in table 3 with their specific energy resources.

Table 3: Primary energy for all life cycle stages for Acoustic Vinyl for one year

Non-renewable primary energy by	Unit	Total Life	Total Life	Production	Transport	Installation	Use	End of
resources		cycle (MJ)	cycle (%)				(1 yr)	Life
Total non-renewable primaryenergy	MJ	217.73	100	197.58	2.27	14.07	5.84	-2.06
Crude oil	MJ	78.83	36	69.02	2.08	4.70	0.63	2.38
Hard coal	MJ	11.47	5	8.60	0.01	0.34	0.98	1.54
Lignite	MJ	10.94	5	9.02	0.00	0.37	0.74	0.80
Natural gas	MJ	103.48	48	100.98	0.17	8.26	1.74	-7.67
Uranium	MJ	12.99	6	9.95	0.01	0.40	1.74	0.90
Renewable primary energy by	Unit	Total Life	Total Life	Production	Transport	Installation	Use	End of
resources		cycle (MJ)	cycle (%)				(1 yr)	Life
Total renewable primary energy	MJ	14.81	100	13.77	0.07	0.27	0.79	-0.10
Geothermical	MJ	0.03	0.2	0.01	0.00	0.00	0.01	0.00
Hydro power	MJ	6.38	43	6.00	0.00	0.05	0.32	0.02
Solar energy Solar energy	MJ	5.92	40	5.52	0.07	0.13	0.23	-0.03
Wind power	MJ	2.36	16	2.13	0.00	0.09	0.23	-0.09

The total amount of renewable and non-renewable primary energy is predominated by the production stage for a one year usage; within the production stage the main contributors are the raw material production and energy generation.

Waste and non-renewable resource consumption

In table 4 the non-renewable resource consumption and waste production is shown for all life cycle stages for a one year usage.

Table 4: Waste categories and non-renewable resources for Acoustic Vinyl (one year)

Wastes	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Hazardous waste	[kg]	2.98E-03	2.68E-03	0.00E+00	3.00E-04	0.00E+00	0.00E+00
Non-hazardous waste	[kg]	1.55E+01	1.28E+01	7.54E-03	5.49E-01	1.12E+00	1.03E+00
Radioactive waste	[kg]	5.23E-03	4.00E-03	3.12E-06	1.68E-04	7.12E-04	3.49E-04
Resources	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Nonrenewable resources	[kg]	19.49	14.78	0.01	0.66	1.13	2.92

According to ISO 14025 & EN 15804

Life Cycle Assessment

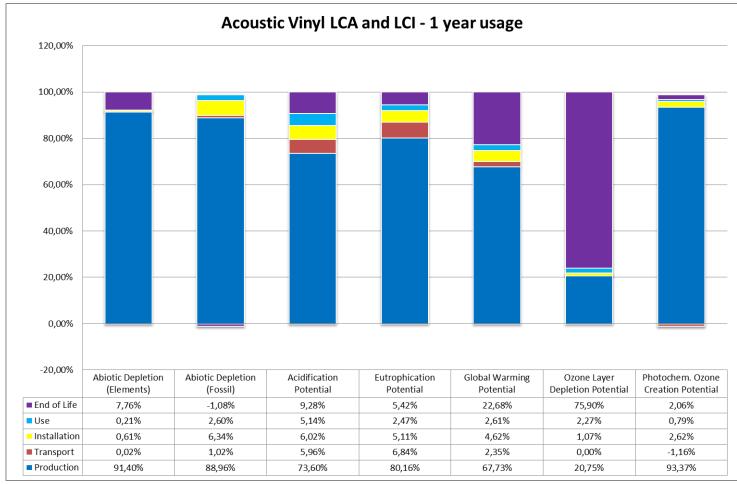
In table 5 the environmental impacts for one lifecycle are presented for Acoustic Vinyl. In tables 6 the environmental impacts are presented for all the lifecycle stages.

Table 5: Results of the LCA – Environmental impacts one lifecycle (one year) – Acoustic Vinyl

Impact Category : CML 2001 - Nov. 2010	Acoustic Vinyl	Unit
Global Warming Potential (GWP 100 years)	1.23E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	1.01E-07	kg R11-Equiv.
Acidification Potential (AP)	2.62E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	3.35E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.14E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	3.04E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	2.17E+02	[MJ]

Table 6: Results of the LCA – Environmental impact for Acoustic Vinyl (one year)

ratio or research or and low limited impaction research improved in the year.								
Impact Category : CML 2001 – Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life		
Global Warming Potential	kg CO2-Equiv.	8.33E+00	2.90E-01	5.68E-01	3.22E-01	2.79E+00		
Ozone Layer Depletion Potential	kg R11-Equiv.	2.10E-08	2.61E-12	1.08E-09	2.30E-09	7.67E-08		
Acidification Potential	kg SO2-Equiv.	1.93E-02	1.56E-03	1.58E-03	1.35E-03	2.43E-03		
Eutrophication Potential	kg PSO4-Equiv.	2.69E-03	2.29E-04	1.71E-04	8.29E-05	1.82E-04		
Photochem. Ozone Creation Potential	kg Ethene-Equiv.	1.09E-02	-1.35E-04	3.05E-04	9.17E-05	2.40E-04		
Abiotic Depletion Elements	kg Sb-Equiv.	2.78E-05	5.85E-09	1.86E-07	6.36E-08	2.36E-06		
Abiotic Depletion Fossil	MJ	1.97E+02	2.27E+00	1.41E+01	5.78E+00	-2.39E+00		


The relative contribution of each process stage to each impact category for Acoustic Vinyl is shown in figure 2.

According to ISO 14025 & EN 15804

Figure 2: relative contribution of each process stage to each impact category for Acoustic Vinyl for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In most of the impact categories (ADPE, ADPF, AP, EP, GWP and POCP) the production stage has the main contribution to the overall impact and except for POCP the raw material supply is the key contributor with a share of 89 – 99%. For POCP the share of the Forbo manufacturing stage is 53%, caused by the use of energy during the manufacturing of Acoustic Vinyl.

For the transportation stage a significant contribution comes from the categories AP and EP in which the trucks used for a worldwide distribution are the major contributors.

For GWP, AP, EP and ADPF the adhesive for the flooring installation has an impact of approximately 4 - 6% of the total. Also for the use stage these are the main impact categories, mainly caused by the use of electricity for cleaning.

At the End of Life stage the main impact categories are AP, ADPE, GWP and ODP, this is mainly due to the incineration and landfilling of the post-consumer waste.

According to ISO 14025 & EN 15804

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the European Standard EN15804 is published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modelling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- Level I (recommended and satisfactory),
- Level II (recommended but in need of some improvements)
- o Level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances.

USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 7: Results of the LCA - Environmental impacts one lifecycle (one year) - Acoustic Vinyl

Impact Category : USEtox	Acoustic Vinyl	Unit
Eco toxicity	8.12E-01	PAF m3.day
Human toxicity, cancer	9.13E-09	Cases
Human toxicity, non-canc.	1.27E-06	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 8: Results of the LCA – Environmental impact for Acoustic Vinyl (one year)

Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	7.49E-01	1.72E-02	1.79E-02	2.78E-02	1.06E-04
Human toxicity, cancer	cases	8.50E-09	7.14E-11	2.78E-10	2.66E-10	8.48E-12
Human toxicity, non-canc.	cases	1.16E-06	3.31E-08	2.78E-08	5.50E-08	-3.01E-09

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In all the Toxicity categories the production stage is the main contributor to the total overall impact. The raw material supply has a share of approximately 99% of the production stage, therefore the choice of raw materials can highly influence the Toxicity categories.

For the installation stage the adhesive is the major contributor to the total impact for all three Toxicity categories with a share of 97%.

The Use stage has a minor impact of \pm 3% for all three impact categories. This is mainly due to the use of electricity for the cleaning of the floor. The used cleaning regime of vacuuming twice a week is very conservative and will in practice most of the times be lower.

According to ISO 14025 & EN 15804

EN15804 Results

In this section the calculations have been conducted and verified according to the requirements of the European Standard EN 15804. In addition, calculations followed the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report", however, Part A was not included as a part of the verification.

Table 9: Results of the LCA – Environmental impact for Acoustic Vinyl (one year)

		Manuf acturing	Insta	llation	Use (1yr)		Enc	of Life		Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
GWP	[kg CO2-Equiv.]	8,10E+00	2,90E-01	5,70E-01	3,22E-01	1,70E-02	7,08E-02	2,30E+00	4,07E-01	-1,56E-03
ODP	[kg CFC11-Equiv.]	2,09E-08	2,61E-12	1,08E-09	2,30E-09	4,31E-09	1,48E-12	6,71E-08	5,30E-09	-1,40E-12
AP	[kg SO2-Equiv.]	1,88E-02	1,56E-03	1,58E-03	1,35E-03	1,16E-04	3,56E-04	1,87E-03	9,13E-05	-7,39E-06
EP	[kg PO43 Equiv.]	2,63E-03	2,29E-04	1,72E-04	8,29E-05	4,21E-06	8,56E-05	6,07E-05	3,10E-05	-3,90E-07
POCP	[kg Ethen Equiv.]	1,07E-02	-1,35E-04	3,06E-04	9,17E-05	5,96E-06	3,79E-05	9,21E-05	1,05E-04	-4,36E-07
ADPE	[kg Sb Equiv.]	2,73E-05	5,85E-09	1,86E-07	6,36E-08	1,17E-09	3,26E-09	2,36E-06	-4,54E-09	-2,15E-10
ADPF	[MJ]	1,92E+02	2,27E+00	1,41E+01	5,78E+00	3,26E-01	9,70E-01	-3,67E+00	-7,93E-03	-2,75E-02
GWP = Global warn	ning potential; ODP = Depletion pote	ntial of the stratospheric	ozone layer; A	P = Acidificatio	n potential of lar	nd and water;	EP = Eutroph	ication potential	; POCP = Form	nation

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources

Table 10: Results of the LCA – Resource use for Acoustic Vinyl (one year)

		Manuf acturing	Insta	ıllation	Use (1yr)	End of Life			Credits	
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
PERE	[MJ]	1.37E+01	7.37E-02	2.74E-01	7.88E-01	2.55E-02	5.74E-02	-8.83E-02	-9.06E-02	-4.59E-03
PERM	[MJ]	-	-	1	-	-	-	-	-	-
PERT	[MJ]	-	-	-	-	-	-	-	-	-
PENRE	[MJ]	1.92E+02	2.27E+00	1.41E+01	5.84E+00	3.30E-01	9.70E-01	-3.39E+00	2.92E-02	-2.76E-02
PENRM	[MJ]	0.00E+00	-	-	-	-	-	-	-	-
PENRT	[MJ]	3.03E-03	1.42E-05	1.61E-04	9.54E-05	0.00E+00	7.21E-06	-1.40E-04	-1.58E-05	-5.62E-07
SM	[kg]	3.17E-02	1.48E-04	1.69E-03	9.99E-04	0.00E+00	7.54E-05	-1.47E-03	-1.65E-04	-5.89E-06
RSF	[MJ]	4.78E+01	8.96E-02	2.40E+00	5.28E+00	-7.97E-02	5.53E-02	-1.69E+00	-1.25E+00	-1.23E-02
NRSF	[MJ]	3.17E-02	1.48E-04	1.69E-03	9.99E-04	0.00E+00	7.54E-05	-2.93E-03	-5.50E-05	-5.89E-06
FW	[kg]	4.78E+01	8.96E-02	2.40E+00	5.28E+00	-7.97E-02	5.53E-02	-3.58E+00	-4.32E-01	-1.23E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

According to ISO 14025 & EN 15804

Table 11: Results of the LCA – Output flows and Waste categories for Acoustic Vinyl (one year)

		Manuf acturing	Transport	Installation	Use (1yr)		End	of Life/credi	ts	
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
HWD	[kg]	2.68E-03	0.00E+00	3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	1.28E+01	7.54E-03	5.49E-01	1.12E+00	6.04E-02	6.00E-03	8.84E-01	7.79E-02	6.23E-03
RWD	[kg]	4.00E-03	3.12E-06	1.68E-04	7.12E-04	5.41E-05	1.39E-06	2.13E-04	7.62E-05	4.05E-06
CRU	[kg]	-	-	-	-	-	-	-	-	-
MFR	[kg]	-	-	-	-	-	-	-	-	-
MER	[kg]	-	-	-	-	-	-	-	-	-
EE Power	[MJ]	-	-	1.17E-02	-	-	-	7.66E-01	-	-
EE Thermal										
energy	[MJ]	-	-	0.00E+00	-	-	-	9.86E+00	-	-
HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for recycling; MER = Materials										

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025 on page 12. A more detailed interpretation is published in the appendix.

According to ISO 14025 & EN 15804

References

GABI 6 2012 PE INTERNATIONAL AG; GaBi 6: Software-System and Database for Life Cycle

Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.

GABI 6 2012D GaBi 6: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering.

Copyright, TM. Stuttgart, Echterdingen, 1992-2012. http://documentation.gabi-software.com/

NSF International Product Category Rule for Environmental Product Declarations

May 22, 2012 Flooring: Carpet, Resilient, Laminate, Ceramic, Wood

UL ENVIRONMENT UL Environment's Program Operator Rules

ERFMI 2008 Final report: LCA, Environmental Information Sheet and Eco design Model of Resilient

Flooring by order of ERFMI, PE International, 2008

IBU 2011 PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the

Background Report, Institut Bauen und Umwelt e.V.

Description of Selected Impact Categories, PE International AG, 2012

ILCD Handbook: General guide European Commission - Joint Research Centre - Institute for Environment and Sustainability:

for Life Cycle Assessment -International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life

Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708 EN.

Luxembourg. Publications Office of the European Union; 2010

STANDARDS AND LAWS

Detailed guidance

DIN EN ISO 14044 Environmental management - Life cycle assessment - Requirements and guidelines (ISO

14044:2006); German and English version EN ISO 14044

ISO 14025 2006 DIN EN ISO 14025: Environmental labels and declarations — Type III environmental

declarations — Principles and procedures

ISO 14040 2006 Environmental management - Life cycle assessment - Principles and framework (ISO 14040); German and English version EN ISO 14040

CFN/TR 15941 Sustainability of construction works - Environmental product declarations - Methodology for

selection and use of generic data; German version CEN/TR 15941

EN 15804: Sustainability of construction works — Environmental Product Declarations — EN 15804

Core rules for the product category of construction products

ISO 24011 Resilient floor coverings - Specification for plain and decorative linoleum

CPR REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL of 9 March 2011 laying down harmonized conditions for the marketing of

construction products and repealing Council Directive 89/106/EEC

FN-ISO 10874 Resilient, textile and laminate floor coverings - Classification

Life Cycle Assessment Acoustic Vinyl

LCA study conducted by:
Forbo Flooring
Industrieweg 12
1566 JP Assendelft
The Netherlands

Authors:

Floris Zeitler, Forbo

Industrieweg 12 Forbo Flooring BV

1566 JP Assendelft, The Netherlands Tel. +31 (0) 75 6477477 Fax +31 (0) 75 6477707 E-mail floris.zeitler@forbo.com

Internet www.forbo-flooring.com

Nomenclature

Abbreviation Explanation

ADP Abiotic Depletion Potential AΡ Acidification Potential

BLBSB Benefits and Loads Beyond the System Boundary

CRU Components for re-use

Exported energy per energy carrier EE

EP **Eutrophication Potential**

EPD Environmental Product Declaration

Use of net fresh water FW **GWP** Global Warming Potential HWD Hazardous waste disposed Life Cycle Assessment LCA MER Materials for energy recovery Materials for recycling MFR

NRSF Use of non-renewable secondary fuels ODP Ozone Layer Depletion Potential

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw

materials

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Use of renewable primary energy resources used as raw materials

PERT Total use of renewable primary energy resources

PCR Product Category Rules

Photochemical Ozone Creation Potential POCP RSF Use of renewable secondary fuels

RSL Reference Service Life RWD Radioactive waste disposed

SM Use of secondary material

General

The present LCA study of the company Forbo Flooring, a manufacturer of resilient floor coverings, has been performed by Forbo Flooring under support of PE International and has been conducted according to the requirements of the European Standard EN15804 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report". The LCA report was sent to verification on 05/31/13

Scope

This document is the LCA report for the "Environmental Product Declaration" (EPD) of "Acoustic Vinyl".

The provision of an LCA report is required for each EPD of the EPD-program holder (UL Environment). This document shows how the calculation rules were applied and describes additional LCA information on the Life Cycle Assessment in accordance with the requirements of ISO 14040 series.

Content, structure and accessibility of the LCA report

The LCA report provides a systematic and comprehensive summary of the Safety documentation supporting the verification of an EPD.

The report documents the information on which the Life Cycle Assessment is based, while also ensuring the additional information contained within the EPD complies with the requirements of ISO 14040 series.

The LCA report contains all of the data and information of importance for the details published in the EPD. Care is been given to all explanations as to how the data and information declared in the EPD arises from the Life Cycle Assessment. The verification of the EPD is aligned towards the structure of the rule document based on ISO 14025 and EN15804.

Goal of the study

The reason for performing this LCA study is to publish an EPD based on EN 15804 and ISO 14025. This study contains the calculation and interpretation of the LCA results for Acoustic Vinyl complying with EN-ISO 11638.

Manufactured by Forbo Sarlino S.A.S. 63. rue Gosset B.P. 2717 FR-51055 Reims Cedex France

the following life cycle stages were considered:

- Product stage
- Transport stage
- Installation stage
- Use stage
- End-of-life stage
- Benefits and loads beyond the product system boundary

The main purpose of EPD is for use in business-to-business communication. As all EPD are publicly available on the website of UL Environment and therefore are accessible to the end consumer they can also be used in business-toconsumer communication.

The intended use of the EPD is to communicate environmentally related information and LCA results to support the assessment of the sustainable use of resources and of the impact of construction works on the environment

Scope of the study

Declared / functional unit

The declaration refers to the declared/functional unit of 1m² installed flooring product.

Declaration of construction products classes

The LCA report refers to a manufacturer declaration of type 1a): Declaration of a specific product from a manufacturer's plant.

Acoustic Vinyl is produced at the following manufacturing site:

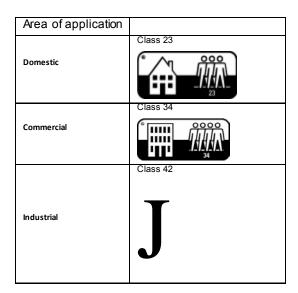
Forbo Sarlino S.A.S.

63. rue Gosset B.P. 2717 FR-51055 Reims Cedex France

Product Definition

Product Classification and description

This declaration covers a broad range of designs and colors. Acoustic vinyl is a resilient floor covering complying with all the requirements of EN 651 / ISO 11638: Resilient floor coverings — Heterogeneous polyvinyl chloride flooring on foam - Specification. The key raw materials include glass fiber, binders (PVC and calcium carbonate), plasticizer and water-based inks.


Acoustic vinyl is produced by Forbo Flooring and is sold worldwide. This declaration refers to Acoustic vinyl (sheet or tiles).

Acoustic vinyl is build up in 5 layers :

- 1. Lacquer surface: This layer gives the final protection and stain resistance
- 2. **Wear layer:** This layer gives a first protection to the printed layer. After finishing the product a factory lacquer surface is applied to protect the surface layer
- 3. Printed layer: Design printed with environmentally friendly water-based inks
- 4. Glass fiber: Support of the floor covering
- Under layer: Foam backing and compact PVC layer achieving an outstanding impact sound reduction and indentation

Range of application

Acoustic vinyl is classified in accordance with EN 651 / ISO 11638 to be installed in the following use areas defined in EN-ISO 10874:

Product Standard

The products considered in this EPD have the following technical specifications:

 Meets or exceeds all technical requirements in EN 651 / ISO 11638 Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification

Acoustic vinyl meets the requirements of EN 14041

EN 13501-1 Reaction to fire $B_{fl} - s1 / C_{fl}$

s1

EN 13893 Slip resistance DS: \geq 0,30 EN 1815 Body voltage < 2 kV EN ISO10456 Thermal conductivity 0,25 W/mK

Accreditation

- o ISO 9001 Quality Management System
- o ISO 14001 Environmental Management System
- O OHSAS 18001 Occupational Health and Safety Management Systems
- SA 8000 Social Accountability International

Delivery status

Characteristics	Nominal Value	Unit
Product thickness	min: 2,55 / max: 4,1	mm
Product Weight	min: 2320 / max: 3581	g/m ²
Rolls Width Length	2.00 (1,01 for complete step) 25 (20 for complete step)	Meter
Tiles	min: 5,12 / max: 5,76	m² / box

Material Content

Component	Material	Mass %	Availability	Origin of raw material
Binder	PVC	Nonrenewable – limited	55	Europe
	DOTP	Nonrenewable - limited	26	_5\$\$
Filler	Calcium Carbonate	Abundant mineral	14	Europe
Stabilizer	Ca/Zn	Nonrenewable - limited	1	Europe
Reinforcement	Glass fibers	Nonrenewable - limited	2	Europe
Additives	Various chemicals	Nonrenewable - limited	1.5	Europe
Finish	Various chemicals	Nonrenewable - limited	0.5	Europe

Production of Main Materials

PVC: Polyvinyl chloride is obtained by polymerization of the monomer vinyl chloride.

Plasticizer: DOTP, a non-phthalate plasticizer, being the diester of terephthalic acid and the branched-chain 2-ethylhexanol. This colorless viscous liquid used for softening PVC plastics is known for chemical similarity to general purpose phthalates such as DEHP and DINP, but without any negative regulatory pressure.

Stabilizer Ca/Zn: Mixed metal stabilizer made from Calcium and Zinc stearate. It is used to avoid PVC degradation during processing at relative high temperature.

Calcium carbonate: An abundant mineral found in all parts of the world as the chief substance in rocks (i.e., marble and limestone). It can be ground to varying particle sizes and is widely used as filler.

Glass fibre: Glass fibre is used as a substrate for floor coverings and provides better dimensional stability.

Various chemicals:

- Lacquer: acrylate hybrid dispersion.
- **Titanium dioxide**: A white pigment produced from the mineral rutile, a naturally occurring form of titanium dioxide. The production of the pigment is a large-scale chemical process
- Inks: water-based inks.

Production of the Floor Covering

Acoustic vinyl is produced in several stages starting with the impregnation of the glass fiber (consists of filling the glass fiber with a PVC paste) and the rotogravure printing (possibility to deposit different patterns and colors).

The next stage is the wear layer gelation with a coating technology (a transparent wear layer on all products).

Then the product is put back to deposit a coat of compact reinforcing PVC and a coat of PVC chemical foam.

Lacquering is obtained by a UV lacquer (acrylate hybrid dispersion): it's a long term protection which avoids metallization, reduces costs and facilitates maintenance.

Inspection is done and edges are cut (trimmings and rejected product are reused).

Finally the floor covering is cut to length into rolls or collected to produce tiles (grinding of the back foam and cutting in tiles). Finished product is send to warehouse department.

Health, Safety and Environmental Aspects during Production

- o ISO 14001 Environmental Management System
- o OHSAS 18001 Occupational Health and Safety Management Systems
- SA 8000 Social Accountability International

Production Waste

Rejected material and the cuttings of the trimming stage are being recycled. Packaging materials are being collected separately and externally recycled.

Delivery and Installation of the Floor Covering

Delivery

A worldwide distribution by truck and container ship is considered. On average every square meter of Acoustic Vinyl is transported as follows:

Transport distance 40 t truck
 Transport distance 7.5t truck (Fine distribution)
 Capacity utilization trucks (including empty runs)
 Transport distance Ocean ship
 Capacity utilization Ocean ship
 Capacity utilization Ocean ship

Since Acoustic Vinyl is mainly sold in Europe on average there is no significant transport distance for the distribution of Acoustic Vinyl by Ocean ship.

Installation

Because of the specific techniques used during the installation of acoustic vinyl 6% (PVC sheet) or 4% (PVC tile) of the material is cut off as installation waste. For installation of acoustic vinyl on the floor: 0.300 kg/m² of adhesive is required. Waste during the installation process may be recycled or landfilled.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends using (low) zero emission adhesives for installing Acoustic Vinyl.

Waste

Waste during the installation process may be recycled or landfilled.

Packaging

Cardboard tubes and packaging paper are being collected separately and are being used in a recycling process.

Use stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

Cleaning and Maintenance

Level of use	Cleaning Process	Cleaning Frequency	Consumption of energy and resources
Commercial/Residential/Industrial	Vacuuming	Twice a week	Electricity
	Damp mopping	Once a week	Hot water
			Neutral detergent

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m², twice a week. This equates to 0.55 kWh/m²*year.

- Once a week wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 3.224 l/m²*year water and 0.04 kg/m²*year detergent. The wet cleaning takes place without power machine usage. Waste water treatment of the arising waste water from cleaning is considered.

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas and is a worst case scenario.

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress. Use protective feet on chairs and tables to reduce scratching. Castor wheels should be suitable for resilient floor coverings

Health Aspects during Usage

Acoustic Vinyl is complying with:

- AgBB requirements
- o French act Grenelle: A+
- Emission class M1

End of Life

The deconstruction of installed Acoustic Vinyl from the floor is done mechanically and the electrical energy needed for this is estimated to be 0.03 kWh/sqm. This amount of energy is taken into account for the calculations.

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed:

- o Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
- Transport Gate to User
- o Installation Stage
- o Use Stage
- o End of Life Stage

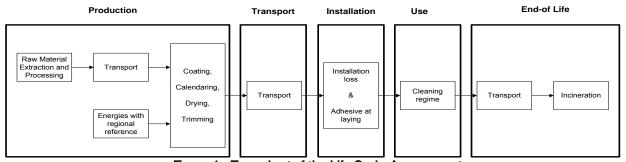


Figure 1 : Flow chart of the Life Cycle Assessment

Description of the declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production waste. Transport data on all considered inputs and output material are also considered.

LCA Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place within the last 10 years.

Table 1: LCA datasets used in the LCA model

Data set	Region	Reference year
Various chemicals	Europe	2012
Various chemicals	Europe	2006
Polyvinyl chloride granulate (PVC)	Germany	2012
DEHP	Germany	2006
Titanium dioxide	Europe	2010
Calcium-Zinc Stearate	Europe	2010
Various chemicals	Europe	2007
Calcium carbonate	Germany	2011
Various chemicals	Internal	2006
Diphenylmethane-4.4 di-isocyanate (MDI)	Europe	2005
Calcium-Zinc Stearate	Europe	2010
Acrylic resin	Germany	2010
Glass fibers	Germany	2011
Various chemicals	Germany	2007
Water (desalinated; deionised)	Germany	2010
Detergent (ammonia based)	Germany	2006
Adhesive for resilient flooring	Germany	2010
Waste incineration of Acoustic Vinyl	Europe	2006
Electricity from Hydro power	France	2009
Power grid mix	Europe	2009
Thermal energy from natural gas	France	2009
Thermal energy from natural gas	Europe	2009
Trucks	Global	2010
Municipal waste water treatment (Sludge incineration).	Europe	2011
Container ship	Global	2010
Diesel mix at refinery	Europe	2009
Heavy fuel oil at refinery (1.0wt.% S)	Europe	2009
Polyethylene film	Europe	2005
Corrugated board	Europe	2002
Kraft liner (Paper)	Europe	2006
Wooden pallets	Germany	1998

The documentation of the LCA data sets can be taken from the GaBi documentation.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered. <u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Reims, France. The GaBi 6 Hydro power datasets has therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-Input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste can be fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

Description of the unit processes in the LCA report

The modeling of the unit processes reported for the LCA are documented in a transparent way, respecting the confidentiality of the data present in the LCA report.

In the following tables the type and amount of the different input and output flows are listed for 1m² produced flooring; installed flooring includes the material loss during installation (5%):

Table 2: Composition of Acoustic	Viny	upper	top laye.	r
----------------------------------	------	-------	-----------	---

Process data	Unit	Acoustic Vinyl
Polyvinyl chloride granulate (PVC)	kg/m2	0.4616
Various chemicals	kg/m2	0.0282
DOTP	kg/m2	0.1662
Calcium-Zinc stearate	kg/m2	0.0107

Table 3: Composition of Acoustic Vinyl intermediate layer

Process data	Unit	Acoustic Vinyl
DOTP	kg/m2	0.1707
Calcium carbonate	kg/m2	0.1251
Polyvinyl Chloride Granulate (PVC)	kg/m2	0.3550
Various chemicals	ka/m2	0.0238

Table 4: Composition of Acoustic Vinyl bottom intermediate layer

Process data	Unit	Acoustic Vinyl
Calcium carbonate	kg/m2	0.1336
DOTP	kg/m2	0.1323
Polyvinyl Chloride Granulate (PVC)	kg/m2	0.3306
Various chemicals	kg/m2	0.0136

Table 5: Composition of Acoustic Vinyl backing layer

Process data	Unit	Acoustic Vinyl
Calcium carbonate	kg/m2	0.1022
DOTP	kg/m2	0.1607
Various chemicals	kg/m2	0.0421
Polyvinyl Chloride Granulate (S-PVC)	kg/m2	0.3150

Table 6: Composition of Acoustic Vinyl substrate layer

Process data	Unit	Acoustic Vinyl
Acrylate resin	kg/m2	0.0150
Glass fibers	kg/m2	0.0450

Table 7: Composition of Acoustic Vinyl Decorating layer

Process data	Unit	Acoustic Vinyl
Acrylic resin	kg/m2	0.0010
Water	kg/m2	0.0030
Organic pigments	kg/m2	0.0010
Polyvinyl Chloride Granulate (PVC)	kg/m2	0.0050

Table 8: Composition of Acoustic Vinyl Lacquer layer

Process data	Unit	Acoustic Vinyl
Urethane / acrylic hybride dispersion	kg/m2	0.0100

Table 9: Production related inputs/outputs

Process data	Unit	Acoustic Vinyl
INPUTS	•	
Acoustic Vinyl upper top layer	kg	0.67
Acoustic Vinyl intermediate layer	kg	0.68
Acoustic Vinyl backing layer	kg	0.62
Acoustic Vinyl substrate layer	kg	0.06
Acoustic Vinyl bottom intermediate layer	kg	0.61
Acoustic Vinyl Lacquer layer	kg	0.01
Acoustic Vinyl decorating layer	kg	0.01
Electricity	MJ	3.98
Thermal energy from natural gas	MJ	7.67
OUTPUTS	·	
Acoustic Vinyl	kg	2.66
Waste	kg	0.30

Table 10: Packaging requirements (per m² manufactured product)

ranto retributing regularity manufactured productly			
Process data	Unit	Acoustic Vinyl	
Polyethylene film	kg	0.0003	
Corrugated board	kg	0.017	
Wrapping paper	kg	0.016	
Wooden pallet	kg	0.029	

Table 11: Transport distances (same for both products)

Process data	Unit	Road	Truck size	Ship
Calcium carbonate	km	410	14 - 20t gross	-
PVC granulate (E-PVC)	km	654	weight / 11,4t	753
PVC granulate (S-PVC)	km	686	payload capacity	1196
Various chemicals	km	600		-
Various chemicals	km	743		-
Calcium-Zinc stearate	km	943		-
Titanium dioxide	km	690		115
DOTP	km	525		170
Various chemicals	km	1390		-
Various chemicals	km	387		
Wooden pallets	km	180		-
Glass fibers	km	611		-
Lacquer	km	364		-
Acrylic resin	km	1000		-
Corrugated board	km	140		-
Wrapping paper	km	210		-
Polyethylene film	km	250		-
Transport to construction site :	km	951		-
-Transport distance 40 t truck		694	34 - 40 t gross	
			weight / 27t	
			payload capacity	
-Transport distance 7.5t truck (Fine		257	7,5 t - 12t gross	
distribution)			weight / 5t payload	
			capacity	
			7,5 t - 12t gross	-
Waste transport to landfill & Incineration	km	200	weight / 5t payload	
			capacity	

Table 12: Inputs/outputs from Installation

Process data	Unit	Acoustic Vinyl
INPUTS	·	
Acoustic Vinyl	kg	2.66
Adhesive (30% water content) - Water - Acrylate co-polymer - Styrene Butadiene co-polymer - Limestone flour - Sand	kg	0.30
OUTPUTS		
Installed Acoustic Vinyl	kg	2.53
Installation Waste	kg	0.13

Table 13: Inputs from use stage (per m².year of installed product)

Process data	Unit	Acoustic Vinyl
Detergent	kg/year	0.04
Electricity	kWh/year	0.55
Water	kg/year	3.224

Table 14: Disposal

Table 11. Biopoda				
Process data	Unit	Acoustic Vinyl		
Post-consumer Acoustic Vinyl to incineration	%	40		
Post-consumer Acoustic Vinyl to landfill	%	60		

Life Cycle Inventory Analysis

In table 15 the environmental impacts for one lifecycle are presented for Acoustic Vinyl . In the table 16 the environmental impacts are presented for all the lifecycle stages.

Table 15: Results of the LCA - Environmental impacts one lifecycle (one year) - Acoustic Vinyl

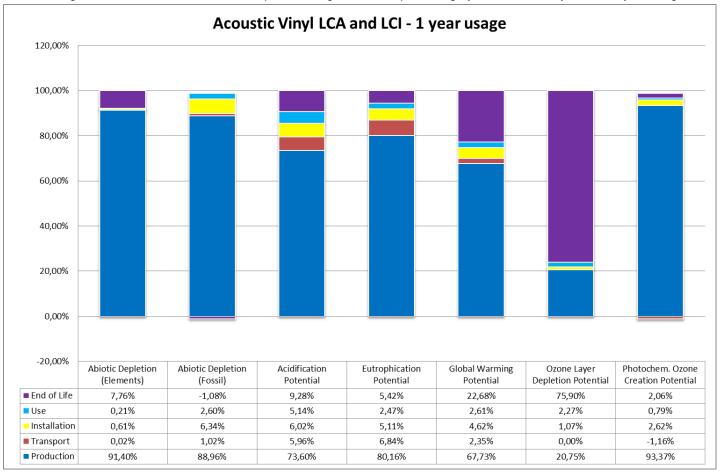

Impact Category : CML 2001 – Nov. 2010	Acoustic Vinyl	Unit
Global Warming Potential (GWP 100 years)	1.23E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	1.01E-07	kg R11-Equiv.
Acidification Potential (AP)	2.62E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	3.35E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.14E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	3.04E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	2.17E+02	[MJ]

Table 16: Results of the LCA – Environmental impact for Acoustic Vinyl (one year)

Impact Category : CML 2001 - Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Global Warming Potential	kg CO2-Equiv.	8.33E+00	2.90E-01	5.68E-01	3.22E-01	2.79E+00
Ozone Layer Depletion Potential	kg R11-Equiv.	2.10E-08	2.61E-12	1.08E-09	2.30E-09	7.67E-08
Acidification Potential	kg SO2-Equiv.	1.93E-02	1.56E-03	1.58E-03	1.35E-03	2.43E-03
Eutrophication Potential	kg PSO4-Equiv.	2.69E-03	2.29E-04	1.71E-04	8.29E-05	1.82E-04
Photochem. Ozone Creation Potential	kg Ethene-Equiv.	1.09E-02	-1.35E-04	3.05E-04	9.17E-05	2.40E-04
Abiotic Depletion Elements	kg Sb-Equiv.	2.78E-05	5.85E-09	1.86E-07	6.36E-08	2.36E-06
Abiotic Depletion Fossil	MJ	1.97E+02	2.27E+00	1.41E+01	5.78E+00	-2.39E+00

The relative contribution of each process stage to each impact category for Acoustic Vinyl is shown in figures 2.

Figure 2: relative contribution of each process stage to each impact category for Acoustic Vinyl for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In most of the impact categories (ADPE, ADPF, AP, EP, GWP and POCP) the production stage has the main contribution to the overall impact and except for POCP the raw material supply is the key contributor with a share of 89 – 99%. For POCP the share of the Forbo manufacturing stage is 53%, caused by the use of energy during the manufacturing of Acoustic Vinyl.

For the transportation stage a significant contribution comes from the categories AP and EP in which the trucks used for a worldwide distribution are the major contributors.

For GWP, AP, EP and ADPF the adhesive for the flooring installation has an impact of approximately 4 - 6% of the total. Also for the use stage these are the main impact categories, mainly caused by the use of electricity for cleaning.

At the End of Life stage the main impact categories are AP, ADPE, GWP and ODP, this is mainly due to the incineration and landfilling of the post-consumer waste.

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the european Standard EN15804 are published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modeling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- Level I (recommended and satisfactory),
- o level II (recommended but in need of some improvements)
- o level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances. USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 17: Results of the LCA – Environmental impacts one lifecycle (one year) – Acoustic Vinyl

Impact Category : USEtox	Acoustic Vinyl	Unit
Eco toxicity	8.12E-01	PAF m3.day
Human toxicity, cancer	9.13E-09	Cases
Human toxicity, non-canc.	1.27E-06	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 18: Results of the LCA – Environmental impact for Acoustic Vinyl (one year)

				, , ,	,	
Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	7.49E-01	1.72E-02	1.79E-02	2.78E-02	1.06E-04
Human toxicity, cancer	cases	8.50E-09	7.14E-11	2.78E-10	2.66E-10	8.48E-12
Human toxicity, non-canc.	cases	1.16E-06	3.31E-08	2.78E-08	5.50E-08	-3.01E-09

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In all the Toxicity categories the production stage is the main contributor to the total overall impact. The raw material supply has a share of approximately 99% of the production stage, therefore the choice of raw materials can highly influence the Toxicity categories.

For the installation stage the adhesive is the major contributor to the total impact for all three Toxicity categories with a share of 97%.

The Use stage has a minor impact of \pm 3% for all three impact categories. This is mainly due to the use of electricity for the cleaning of the floor. The used cleaning regime of vacuuming twice a week is very conservative and will in practice most of the times be lower.

EN15804 results

In this section the calculations have been conducted according to the requirements of the European Standard EN 158024 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report".

		Manufacturing	Instal	lation	Use (1yr) End of Life					Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
GWP	[kg CO ₂ -Equiv.]	8,10E+00	2,90E-01	5,70E-01	3,22E-01	1,70E-02	7,08E-02	2,30E+00	4,07E-01	-1,56E-03
ODP	[kg CFC11-Equiv.]	2,09E-08	2,61E-12	1,08E-09	2,30E-09	4,31E-09	1,48E-12	6,71E-08	5,30E-09	-1,40E-12
AP	[kg SO ₂ -Equiv.]	1,88E-02	1,56E-03	1,58E-03	1,35E-03	1,16E-04	3,56E-04	1,87E-03	9,13E-05	-7,39E-06
EP	[kg PO ₄ ³ Equiv.]	2,63E-03	2,29E-04	1,72E-04	8,29E-05	4,21E-06	8,56E-05	6,07E-05	3,10E-05	-3,90E-07
POCP	[kg Ethen Equiv.]	1,07E-02	-1,35E-04	3,06E-04	9,17E-05	5,96E-06	3,79E-05	9,21E-05	1,05E-04	-4,36E-07
ADPE	[kg Sb Equiv.]	2,73E-05	5,85E-09	1,86E-07	6,36E-08	1,17E-09	3,26E-09	2,36E-06	-4,54E-09	-2,15E-10
ADPF	[MJ]	1,92E+02	2,27E+00	1,41E+01	5,78E+00	3,26E-01	9,70E-01	-3,67E+00	-7,93E-03	-2,75E-02

GWP = Global w arming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and w ater; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources

Table 20: Results of the LCA – Resource use for Acoustic Vinyl (one year)

		Manufacturing	Insta	llation	Use (1yr)	End of Life				Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
PERE	[MJ]	-	-	-	-	-	-	ı	ı	-
PERM	[MJ]	-	-	-	-	-	-	-	-	-
PERT	[MJ]	1.37E+01	7.37E-02	2.74E-01	7.88E-01	2.55E-02	5.74E-02	-8.83E-02	-9.06E-02	-4.59E-03
PENRE	[MJ]	-	-	-	-	-	-	-	-	-
PENRM	[MJ]	-	-	-	-	-	-	-	-	-
PENRT	[MJ]	1.92E+02	2.27E+00	1.41E+01	5.84E+00	3.30E-01	9.70E-01	-3.39E+00	2.92E-02	-2.76E-02
SM	[kg]	0.00E+00	-	-	-	-	-	-	-	-
RSF	[MJ]	3.03E-03	1.42E-05	1.61E-04	9.54E-05	0.00E+00	7.21E-06	-1.40E-04	-1.58E-05	-5.62E-07
NRSF	[MJ]	3.17E-02	1.48E-04	1.69E-03	9.99E-04	0.00E+00	7.54E-05	-1.47E-03	-1.65E-04	-5.89E-06
FW	[kg]	4.78E+01	8.96E-02	2.40E+00	5.28E+00	-7.97E-02	5.53E-02	-1.69E+00	-1.25E+00	-1.23E-02

PERE = Use of renew able primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renew able primary energy resources; PENRE = Use of non-renew able primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renew able secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of not fresh water

Table 21: Results of the LCA – Output flows and Waste categories for Acoustic Vinyl (one year)

		Manufacturing	Transport	Installation	Use (1yr)	End of Life/credits				
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
HWD	[kg]	2.68E-03	0.00E+00	3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	1.28E+01	7.54E-03	5.49E-01	1.12E+00	6.04E-02	6.00E-03	8.84E-01	7.79E-02	6.23E-03
RWD	[kg]	4.00E-03	3.12E-06	1.68E-04	7.12E-04	5.41E-05	1.39E-06	2.13E-04	7.62E-05	4.05E-06
CRU	[kg]	-	-	1	_	-	ı	-	-	_
MFR	[kg]	-	-	1	-		ı	ı	-	-
MER	[kg]	-	-	1	-		ı	ı	-	_
E Pow er	[MJ]	-	-	1.17E-02	_	_	-	7.66E-01	-	_
⊞ Thermal energy	[MJ]	-		0.00E+00		-	-	9.86E+00	-	-

HWD = Hazardous w aste disposed; NHWD = Non-hazardous w aste disposed; RWD = Radioactive w aste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy per energy carrier

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025. A more detailed interpretation for a one year useage is presented in following figure and table.

Figure 3: relative contribution of each process stage to each impact category for Acoustic Vinyl for a one year usage.

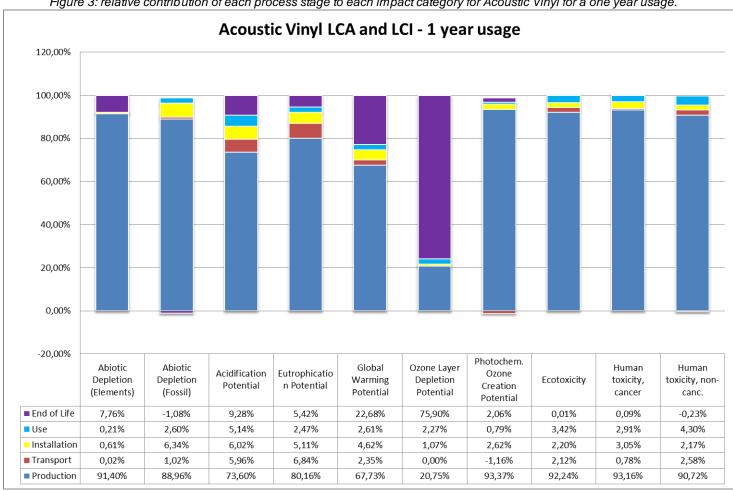


Table 22: Main modules and flows contributing to the total impact in each impact category for Acoustic Vinyl for a one year usage

Impact Category	Stage	Module	•	Main contributor	Main contributing flows		
		Raw Material Extraction	7.29 kg CO ₂ - equiv.	DOTP (2.23 kg CO ₂ -eq.) PVC (4.50 kg CO ₂ -eq.)	Production : Inorganic emissions to air, Carbon		
	Production	Transport of Raw materials	0.04 kg CO ₂ - equiv.	Means of transport (truck, container ship) and their fuels	dioxide Production: Organic emissions to air (Group VOC), VOC (unspecified)		
GWP		Manufacturing 0.77 kg CO ₂ - equiv.		72% Thermal energy			
OWI	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Inorganic emissions to air, Carbon dioxide		
	Installation	Installation		97% Adhesive 82% Electricity	Use : Inorganic emissions to air, Carbon		
	Use	Use		18% Detergent	dioxide		
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL: Inorganic emissions to air, Carbon dioxide		
		Raw Material Extraction	65%	34% Plasticizer 46% Various chemicals			
	1	Transport of Raw	< 0.05%	Means of transport (truck,	Production: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114		
	Production	materials		container ship) and their fuels 74% Paper and cardboard	(Dichlorotetrafluorethane), Halon (1301)		
		Manufacturing Transport Cate to	35%	packaging 23% Non-hazardous w aste			
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Halogenated organic emissions to air, R11 (trichlorofluoromethane),		
ODP	Installation	Installation		51% Adhesive 49% Disposal of PVC installation waste	R114 (Dichlorotetrafluorethane), Halon (1301)		
	Use	Use		10% 目ectricity 90% Detergent	Use: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane)		
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane), Halon (1301)		
	Production	Raw Material 92%		48% PVC 25% DOTP 13% Titanium dioxide	Production: Inorganic emissions to air, NO _x		
		Transport of Raw materials	4%	Means of transport (truck, container ship) and their fuels	and Sulphur dioxide, Ammonia Production: Inorganic emissions to fresh water, Hydrogen chloride		
		Manufacturing	4%	67% Thermal energy 25% Paper and cardboard packaging	water, riyarogeri cinoride		
AP	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Inorganic emissions to air, NO _x and Sulphur dioxide		
	Installation	Installation		98% Adhesive			
	Use	Use		93% Electricity 7% Detergent	Use : Inorganic emissions to air, NO_x and Sulphur dioxide		
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL : Inorganic emissions to air, Hydrogen chloride, $NO_{\rm x}$ and Sulphur dioxide		
		Raw Material Extraction	92.5%	30% Various chemicals 42% PV C 17% DOTP	Production : Inorganic emissions to air,		
	Production	Transport of Raw materials	3%	Means of transport (truck, container ship) and their fuels	Ammonia, NO _x Production: Inorganic emissions to fresh		
		Manufacturing 4.5%		68% Thermal energy 32% Paper and cardboard packaging	w ater, Nitrate		
₽	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Inorganic emissions to air, NO _x		
	Installation	Installation		98% Adhesive	Transport & Installation: Inorganic emissions to fresh water, Ammonium / ammonia		
	Use	Use		80% Electricity 20% Detergent	Use: Inorganic emissions to air, NO _x Use: Inorganic emissions to fresh water, Ammonium / ammonia, Nitrate		
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL : Inorganic emissions to air, NO_x and Ammonia		

Im pact Category	Stage	Module		Main contributor	Main contributing flows		
, j		Raw Material Extraction	47%	51% PVC 41% DOTP	Production : Inorganic emissions to air, Carbon		
	Production	Transport of Raw	. 0. 00/	Means of transport (truck,	monoxide, NO _x , Sulphur dioxide Production : Halogenated organic emissions to		
		materials	< 0.3%	container ship) and their fuels	air, Butane (n-butane), NMVOC (Unspecified),		
		Manufacturing 53% Transport Gate to		99% Thermal energy Means of transport (truck,	VOC (Unspecified) Transport & Installation: Inorganic emissions		
	Transport	User		container ship) and their fuels	to air, Carbon monoxide, NO _x , Sulphur dioxide		
POCP	Installation	Installation		98% Adhesive	Transport & Installation: Halogenated organic emissions to air, NMVOC (Unspecified),		
					Use: Inorganic emissions to air, Sulphur		
	Use	Use		81% electricity 19% Detergent	dioxide, Nitrogen dioxide Use: Halogenated organic emissions to air,		
				10 % Betergent	NMVOC (Unspecified)		
	EOL			Incineration/landfill of post- consumer Acoustic Vinyl	EOL: Inorganic emissions to air, Carbon monoxide, NO _x , Sulphur dioxide		
	LOL	EOL		Energy substitution from	EOL: Organic emissions to air (Group VOC),		
	D 1 11	Dow Material	ı	incineration 58% PVC	NMVOC (Unspecified)		
	Production	Raw Material Extraction	99%	29% Glass fiber	Production: Nonrenew able resources,		
		Transport of Raw	<0.01%	Means of transport (truck,	Colemanite ore, Sodium chloride (Rock salt)		
		materials Manufacturing	1%	container ship) and their fuels 72% ⊟ectricity	Production : Nonrenew able elements, Lead		
	Transport	Transport Gate to	. , ,	Means of transport (truck,	Transport & Installation: Nonrenew able		
	<u> </u>	User		container ship) and their fuels	resources, Sodium chloride (rock salt) Transport & Installation: Nonrenew able		
ADPe	Installation	Installation		100% Adhesive	elements, Lead		
				57% ⊟ectricity	Use: Nonrenew able resources, Sodium		
	Use	Use		43% Detergent	chloride (Rock salt) Use: Nonrenew able elements, Chromium,		
				1 1511 6	Copper		
		EOL		Incineration/landfill of post- consumer Acoustic Vinyl	EOL: Nonrenew able resources, Magnesium		
	EOL			Energy substitution from	chloride leach (40%)		
	Production	Raw Material		incineration 58% PVC	Production : Crude oil resource, Crude oil (in		
	Troduction	Extraction 95%		37% DOTP	MJ)		
		Transport of Raw materials <0.3%		Means of transport (truck, container ship) and their fuels	Production : Natural gas (resource), Natural gas (in MJ)		
		Manufacturing 5%		94% Thermal energy			
A DD4	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Crude oil (resource) Transport & Installation: Natural gas		
ADPf	Installation	Installation		99% Adhesive	(resource),		
	Use	Use		81% electricity	Use : Hard coal (resource), Natural gas		
		OSE		19% Detergent Incineration/landfill of post-	(resource), Uranium(resource)		
	EOL	EOL		consumer Acoustic Vinyl	EOL : Natural gas (resource)		
				Energy substitution from incineration	LOC : Natural gas (resource)		
		Raw Material		46% Various chemicals	Production : Heavy metals to industrial soil,		
	Production	Extraction	99%	25% PVC 14% CaZn-stearate	Copper (+II), Zinc (+II)		
		Transport of Raw	< 0.5%	Means of transport (truck,	Production: Heavy metals to agricultural soil, Copper (+II), Zinc (+II)		
		materials	V 0.576	container ship) and their fuels 40% Thermal energy	Production: Heavy metals to fresh water,		
		Manufacturing 1%		56% Paper and cardboard	Copper (+II), Zinc (+II)		
	Transass	Transport Gate to	1	packaging Means of transport (truck,	Transport & installation : Heavy metals to fresh		
Eco toxicity	Transport Installation	User		container ship) and their fuels	w ater, Copper (+ll), Nickel (+ll), Zinc (+ll) Transport & installation : Heavy metals to		
	ii io tailatiUi i	Installation		97% Adhesive	agricultural soil, Zinc (+II), Copper (+II)		
	l	1		7% Detergent	Use: Heavy metals to fresh water, Zinc (+II), Copper (+II)		
	Use	Use		93% Electricity	Use: Heavy metals to agricultural soil, Copper		
				Incineration/landfill of post-	(+II), Zinc (+II) EOL: Heavy metals to fresh water, Copper		
	EOL	EOL		consumer Acoustic Vinyl	(+II), Cadmium (+II)		
				Energy substitution from incineration	EOL: Heavy metals to agricultural soil, Copper (+II), Zinc (+II)		
	Production	Raw Material	99%	74% PVC	Production : Heavy metals to industrial soil,		
Human toxicity, cancer		Extraction Transport of Raw		13% Various chemicals Means of transport (truck,	Lead (+II), Mercury (+II) Production: Heavy metals to air, Mercury (+II)		
- 3		materials	< 0.2%	container ship) and their fuels	Production: Halogenated organic emissions to		
		Manufacturing 1%		78% Thermal energy	air, Vinyl chloride (VCM; chloroethene)		

Impact Category	Stage	Module		Main contributor	Main contributing flows
					Production : Heavy metals to fresh w ater, Chromium (+VI)
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Heavy metals to air, Mercury (+II)
	Installation	Installation		100% adhesive	Transport & Installation: Heavy metals to fresh water, Chromium (+VI), Nickel (+II)
	Use	Use		85% Electricity 15% Detergent	Use: Heavy metals to air, Mercury (+II) Use: Heavy metals to fresh water, Chromium (+VI) Use: Heavy metals to agricultural soil, Mercury (+II)
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL : Heavy metals to air, Mercury (+ll) EOL : Heavy metals to agricultural soil, Mercury (+ll)
	Production	Raw Material 99%		58% Various chemicals 20% PV C 18% CaZn-stearate	Production : Heavy metals to industrial soil, Zinc (+ll), Lead (+ll), Mercury (+ll)
		Transport of Raw materials	0.5%	Means of transport (truck, container ship) and their fuels	Production: Heavy metals to agricultural soil, Zinc (+ll), Lead (+ll), Mercury (+ll)
		Manufacturing	0.5%	77% Paper and cardboard packaging	Zilic (*ii), Lead (*ii), Mercury (*ii)
Human toxicity,	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation: Heavy metals to air, Mercury (+II)
non canc.	Installation	Installation		99% adhesive	Transport & Installation: Heavy metals to agricultural soil, Zinc (+II)
	Use	Use		99% electricity	Use: Heavy metals to air, Mercury (+II), Zinc (+II) Use: Heavy metals to agricultural soil, Mercury (+II), Zinc (+II)
	EOL	EOL		Incineration/landfill of post- consumer Acoustic Vinyl Energy substitution from incineration	EOL : Heavy metals to agricultural soil, Lead (+II), Mercury (+II), Zinc (+II) EOL : Heavy metals to air, Mercury (+II)

Description of Selected Impact Categories

Abiotic Depletion Potential

The abiotic depletion potential covers all natural resources such as metal containing ores, crude oil and mineral raw materials. Abiotic resources include all raw materials from non-living resources that are non-renewable. This impact category describes the reduction of the global amount of non-renewable raw materials. Non-renewable means a time frame of at least 500 years. This impact category covers an evaluation of the availability of natural elements in general, as well as the availability of fossil energy carriers.

ADP (elements) describes the quantity of non-energetic resources directly withdrawn from the geosphere. It reflects the scarcity of the materials in the geosphere and is expressed in Antimony equivalents. The characterization factors are published by the CML, Oers 2010.

Are fossil energy carriers included in the impact category, it is ADP (fossil). Fossil fuels are used similarly to the primary energy consumption; the unit is therefore also MJ. In contrast to the primary fossil energy ADP fossil does not contain uranium, because this does not count as a fossil fuel.

Primary energy consumption

Primary energy demand is often difficult to determine due to the various types of energy source. Primary energy demand is the quantity of energy directly withdrawn from the hydrosphere, atmosphere or geosphere or energy source without any anthropogenic change. For fossil fuels and uranium, this would be the amount of resource withdrawn expressed in its energy equivalent (i.e. the energy content of the raw material). For renewable resources, the energy-characterized amount of biomass consumed would be described. For hydropower, it would be based on the amount of energy that is gained from the change in the potential energy of water (i.e. from the height difference). As aggregated values, the following primary energies are designated:

The total "Primary energy consumption non-renewable", given in MJ, essentially characterizes the gain from the

energy sources natural gas, crude oil, lignite, coal and uranium. Natural gas and crude oil will both be used for energy production and as material constituents e.g. in plastics. Coal will primarily be used for energy production. Uranium will only be used for electricity production in nuclear power stations.

The total "Primary energy consumption renewable", given in MJ, is generally accounted separately and comprises hydropower, wind power, solar energy and biomass. It is important that the end energy (e.g. 1 kWh of electricity) and the primary energy used are not miscalculated with each other; otherwise the efficiency for production or supply of the end energy will not be accounted for. The energy content of the manufactured products will be considered as feedstock energy content. It will be characterized by the net calorific value of the product. It represents the still usable energy content.

Waste categories

There are various different qualities of waste. For example, waste can be classed according to German and European waste directives. The modeling principles have changed with the last GaBi4 database update in October 2006. Now all LCA data sets (electricity generation, raw material etc.) already contain the treatment of the waste with very low waste output at the end of the stage. So the amount of waste is predominantly caused by foreground processes during the production phase. This is important for the interpretation of waste amounts.

From a balancing point of view, it makes sense to divide waste into three categories. The categories overburden/tailings, industrial waste for municipal disposal and hazardous waste will be used.

Overburden / tailings in kg: This category consists of the layer which must be removed in order to access raw material extraction, ash and other raw material extraction conditional materials for disposal. Also included in this category are tailings such as inert rock, slag, red mud etc.

Industrial waste for municipal disposal in kg: This term contains the aggregated values of industrial waste for municipal waste according to 3. AbfVwV TA SiedlABf.

Hazardous waste in kg: This category includes materials that will be treated in a hazardous waste incinerator or hazardous waste landfill, such as painting sludge's, galvanic sludge's, filter dusts or other solid or liquid hazardous waste and radioactive waste from the operation of nuclear power plants and fuel rod production.

Global Warming Potential (GWP)

The mechanism of the greenhouse effect can be observed on a small scale, as the name suggests, in a greenhouse. These effects are also occurring on a global scale. The occurring short-wave radiation from the sun comes into contact with the earth's surface and is partly absorbed (leading to direct warming) and partly reflected as infrared radiation. The reflected part is absorbed by so-called greenhouse gases in the troposphere and is re-radiated in all directions, including back to earth. This results in a warming effect on the earth's surface.

In addition to the natural mechanism, the greenhouse effect is enhanced by human activities. Greenhouse gases that are considered to be caused, or increased, anthropogenically are, for example, carbon dioxide, methane and CFCs. *Figure A1* shows the main processes of the anthropogenic greenhouse effect. An analysis of the greenhouse effect should consider the possible long term global effects.

The global warming potential is calculated in carbon dioxide equivalents (CO_2 -Eq.). This means that the greenhouse potential of an emission is given in relation to CO_2 . Since the residence time of the gases in the atmosphere is incorporated into the calculation, a time range for the assessment must also be specified. A period of 100 years is customary.

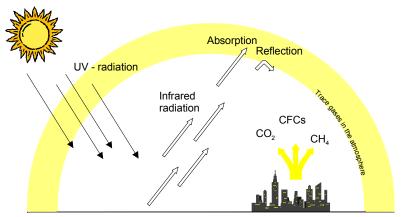


Figure A1: Greenhouse effect (KREISSIG 1999)

Acidification Potential (AP)

The acidification of soils and waters predominantly occurs through the transformation of air pollutants into acids. This leads to a decrease in the pH-value of rainwater and fog from 5.6 to 4 and below. Sulphur dioxide and nitrogen oxide and their respective acids (H_2SO_4 and HNO_3) produce relevant contributions. This damages ecosystems, whereby forest dieback is the most well-known impact.

Acidification has direct and indirect damaging effects (such as nutrients being elutriated from soils or an increased solubility of metals into soils). But even buildings and building materials can be damaged. Examples include metals and natural stones which are corroded or disintegrated at an increased rate.

When analyzing acidification, it should be considered that although it is a global problem, the regional effects of acidification can vary. *Figure A2* displays the primary impact pathways of acidification.

The acidification potential is given in sulphur dioxide equivalents (SO2-Eq.). The acidification potential is described as the ability of certain substances to build and release H+ - ions. Certain emissions can also be considered to have an acidification potential, if the given S-, N- and halogen atoms are set in proportion to the molecular mass of the emission. The reference substance is sulphur dioxide.

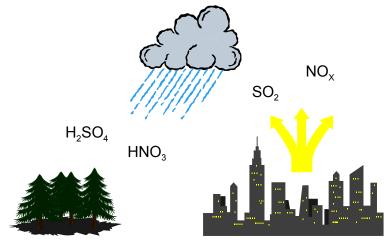


Figure A2: Acidification Potential (KREISSIG 1999)

Eutrophication Potential (EP)

Eutrophication is the enrichment of nutrients in a certain place. Eutrophication can be aquatic or terrestrial. Air pollutants, waste water and fertilization in agriculture all contribute to eutrophication.

The result in water is an accelerated algae growth, which in turn, prevents sunlight from reaching the lower depths. This leads to a decrease in photosynthesis and less oxygen production. In addition, oxygen is needed for the decomposition of dead algae. Both effects cause a decreased oxygen concentration in the water, which can eventually lead to fish dying and to anaerobic decomposition (decomposition without the presence of oxygen). Hydrogen sulphide and methane are thereby produced. This can lead, among others, to the destruction of the eco-system.

On eutrophicated soils, an increased susceptibility of plants to diseases and pests is often observed, as is a degradation of plant stability. If the nutrification level exceeds the amounts of nitrogen necessary for a maximum harvest, it can lead to an enrichment of nitrate. This can cause, by means of leaching, increased nitrate content in groundwater. Nitrate also

ends up in drinking water.

Nitrate at low levels is harmless from a toxicological point of view. However, nitrite, a reaction product of nitrate, is toxic to humans. The causes of eutrophication are displayed in Figure A3. The eutrophication potential is calculated in phosphate equivalents (PO4-Eq). As with acidification potential, it's important to remember that the effects of eutrophication potential differ regionally.

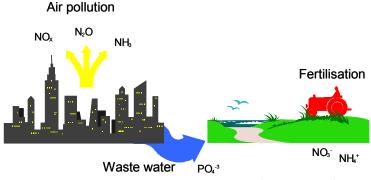


Figure A3: Eutrophication Potential (KREISSIG 1999)

Photochemical Ozone Creation Potential (POCP)

Despite playing a protective role in the stratosphere, at ground-level ozone is classified as a damaging trace gas. Photochemical ozone production in the troposphere, also known as summer smog, is suspected to damage vegetation and material. High concentrations of ozone are toxic to humans.

Radiation from the sun and the presence of nitrogen oxides and hydrocarbons incur complex chemical reactions, producing aggressive reaction products, one of which is ozone. Nitrogen oxides alone do not cause high ozone concentration levels. Hydrocarbon emissions occur from incomplete combustion, in conjunction with petrol (storage, turnover, refueling etc.) or from solvents. High concentrations of ozone arise when the temperature is high, humidity is low, when air is relatively static and when there are high concentrations of hydrocarbons. Today it is assumed that the existence of NO and CO reduces the accumulated ozone to NO₂, CO₂ and O₂. This means, that high concentrations of ozone do not often occur near hydrocarbon emission sources. Higher ozone concentrations more commonly arise in areas of clean air, such as forests, where there is less NO and CO (*Figure A4*).

In Life Cycle Assessments, photochemical ozone creation potential (POCP) is referred to in ethylene-equivalents (C_2H_4 -Äq.). When analyzing, it's important to remember that the actual ozone concentration is strongly influenced by the weather and by the characteristics of the local conditions.

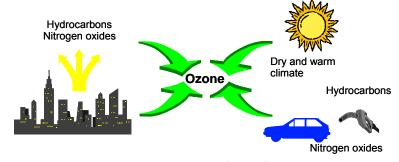


Figure A4: Photochemical Ozone Creation Potential

Ozone Depletion Potential (ODP)

Ozone is created in the stratosphere by the disassociation of oxygen atoms that are exposed to short-wave UV-light. This leads to the formation of the so-called ozone layer in the stratosphere (15 - 50 km high). About 10 % of this ozone reaches the troposphere through mixing processes. In spite of its minimal concentration, the ozone layer is essential for life on earth. Ozone absorbs the short-wave UV-radiation and releases it in longer wavelengths. As a result, only a small part of the UV-radiation reaches the earth.

Anthropogenic emissions deplete ozone. This is well-known from reports on the hole in the ozone layer. The hole is currently confined to the region above Antarctica, however another ozone depletion can be identified, albeit not to the same extent, over the mid-latitudes (e.g. Europe). The substances which have a depleting effect on the ozone can essentially be divided into two groups; the fluorine-chlorine-hydrocarbons (CFCs) and the nitrogen oxides (NOX). *Figure A5* depicts the procedure of ozone depletion.

One effect of ozone depletion is the warming of the earth's surface. The sensitivity of humans, animals and plants to UV-B and UV-A radiation is of particular importance. Possible effects are changes in growth or a decrease in harvest crops

(disruption of photosynthesis), indications of tumors (skin cancer and eye diseases) and decrease of sea plankton, which would strongly affect the food chain. In calculating the ozone depletion potential, the anthropogenically released halogenated hydrocarbons, which can destroy many ozone molecules, are recorded first. The so-called Ozone Depletion Potential (ODP) results from the calculation of the potential of different ozone relevant substances.

This is done by calculating, first of all, a scenario for a fixed quantity of emissions of a CFC reference (CFC 11). This results in an equilibrium state of total ozone reduction. The same scenario is considered for each substance under study whereby CFC 11 is replaced by the quantity of the substance. This leads to the ozone depletion potential for each respective substance, which is given in CFC 11 equivalents. An evaluation of the ozone depletion potential should take the long term, global and partly irreversible effects into consideration.

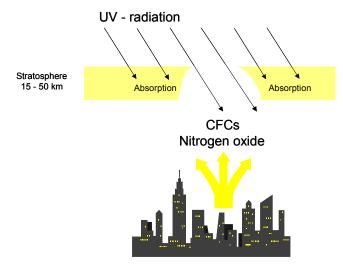


Figure A5: Ozone Depletion Potential (KREISSIG 1999)

References

GAB₁5 2012

GAB₁5 2012D

NSF International May 22, 2012

UL ENVIRONMENT ERFMI 2008

IBU 2011

PE 2012 ILCD Handbook: General guide for Life Cycle Assessment - Detailed guidance

STANDARDS AND LAWS DIN EN ISO 14044

ISO 14025 2006

ISO 14040 2006

CEN/TR 15941

EN 15804

ISO 24011

CPR

EN-ISO 10874

PE INTERNATIONAL AG; GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.
GaBi 5: Documentation of GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.
http://documentation.gabi-software.com/
Product Category Rule for Environmental Product Declarations
Flooring: Carpet, Resilient, Laminate, Ceramic, Wood
UL Environment's Program Operator Rules
Final report: LCA, Environmental Information Sheet and Ecodesign Model of
Resilient Flooring by order of ERFMI, PE International, 2008
PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on
the Background Report, Institut Bauen und Umwelt e.V.
Description of Selected Impact Categories, PE International AG, 2012
European Commission - Joint Research Centre - Institute for Environment and
Sustainability: International Reference Life Cycle Data System (ILCD) Handbook General guide for Life Cycle Assessment - Detailed guidance. First edition March
2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union;

Environmental management - Life cycle assessment - Requirements and guidelines (ISO 14044:2006); German and English version EN ISO 14044
DIN EN ISO 14025: Environmental labels and declarations — Type III environmental declarations — Principles and procedures
Environmental management - Life cycle assessment - Principles and framework (ISO 14040); German and English version EN ISO 14040
Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941 EN 15804: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products Resilient floor coverings - Specification for plain and decorative Acoustic Vinyl REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Resilient, textile and laminate floor coverings - Classification