sustain
straight to the points
creating better environments
Forbo Flooring Systems’ Sustainability Policy

As a global leader in flooring systems we have a responsibility, to all our stakeholders, to create a better environment. The way we serve and drive the market sets the pace and standard for world class flooring solutions. Sustainable development and treating better environments’ is an integral part of all Forbo Flooring Systems’ activities.

Founded in 1928, Forbo’s first product was Linoleum - made from renewable natural materials, fully biodegradable and environmentally friendly, we have been at the forefront of sustainable awareness fulfillment for over 80 years. This global sustainability awareness has grown in the last decades becoming clear that natural resource depletion and global warming are two practices that can not continue as they have in the past if we are to fulfill our obligations to future generations. It is these obligations, to future generations, that we will comply to and in doing so act as a sustainable enterprise.

Forbo underwrites the broad and all inclusive definition for sustainable doing so act as a sustainable enterprise.

“Developments that meet present needs without compromising the ability of future generations to meet their needs.”

The United Nations’ definition of sustainability recognizes three individual dimensions that together make up a sustainable policy, they are:

- The Economic Dimension: the way in which the company organizes its position in the market place to actively develop its sustainable profile by using its economic stability and profitability for continuous improvement.
- The Social Dimension: the way in which Corporate Social Responsibility and Corporate Governance are defined and followed within the company.
- The Environmental Dimension: The way in which measures specific to improving the environmental impact of the processes and products of the company are regulated and executed.

Forbo Flooring Systems supports these dimensions in a constructive and consistent manner through the following principles:

- “Compliance Plus” - a commitment to go above and beyond Government regulations and requirements
- Integrating Sustainability considerations into all our business decisions
- Regular monitoring of progress and review of sustainability performance
- Commitment to continuous improvement
- Promoting Sustainability throughout our value chain, and expecting our suppliers and customers to comply with this
- Ensure that all staff is fully aware of our Sustainability Policy and are committed to implementing and improving it.

Forbo Flooring Systems fully commits to being a sustainable partner to all our stakeholders.

Sustain: straight to the points

Introduction

The starting point for sustainability in the built environment is, more often than not, LEED® or similar building rating systems. These rating systems focus on the various attributes of a building and provide points that, once accumulated, allow the building to achieve a certification level. It is important to recognize that none of these building rating systems deal directly with products. The focus instead is on certain attributes of products, the percentage (usually by weight) of these attributes in the product, and finally the monetization (method of valuation) of those attributes to determine their contribution towards “points”. These product related attributes include the following categories:

- Recycled Content
- Rapidly Renewable Materials
- PBT Source Reduction
- Acoustical Performance
- Indoor Environmental Quality
- Construction Waste Management
- Regional Materials
- Sustainable Attributes and Certifications

The following pages detail ALL Forbo Flooring Systems products and their specific contributions, by LEED® product and credit, to the attributes listed above, measured in accordance with ISO standards and definitions and third-party validated. Finally a monetization of these contributions is also included by product for reference.

By providing this information it is our hope to simplify the collection of points towards LEED® certifications and ensure that the claims made are legitimate and validated. Finally, as you read on, we wish to provoke your thoughts on how to move beyond point collection towards Silver, Gold, or Platinum ratings to a place further along the Green path, that of true sustainability.

Denis Darragh
General Manager
North America / Asia - Pacific
innovation & design:

- Wood flour: Germany
- Gum rosin: Indonesia

1-2 points (NC, schools, CS, CI)

materials & resources credit

- 5 Assendelft, The Netherlands

regional material:

- Marmoleum over a 6 inch concrete slab - IIC 42
- Marmoleum over a wood joist construction - IK 51

construction waste management:

- Compostable paper scraps: check with Forbo for available markets packaging: 100% recyclable

regional material:

- Materials & resources credit 5: 1-2 points (NC, schools, CS, CI)

regional extraction/process:

- Composition Sheet (MCS):
 - Width: 4 ft 0 in x 8 ft 0 in
 - Thickness: 0.080" (2.0 mm)

sustainable attributes:

- 100% USDA Certified Biobased Product

innovation & design:

- Smart™: Sustainable Products Standard

physical properties:

- Marmoleum® Sheet:
 - Real, Fresco, Striato, Vivace, Prisma, Graphix, Oxyd, Unexpected Nature, Dutch Design, Walton

- Marmoleum® Composition Sheet (MCS):
 - Physical properties:
 - Width: 79.2 in (2 meters)
 - Length: 105 linear feet (32 linear meters)
 - Gauge: 0.110" (2.5 mm) - Marmoleum 0.080" (2.0 mm) - MCS

recycled content:

- Pre-consumer [post-industrial]*: 46.5% (wood flour, tall oil)
- Post-consumer: 0%

rapidly renewable materials:

- 33% by weight: Linseed oil, pine resin, jute

PBT source reduction:

- Pilot credit 2: 1 point (NC, schools, CS, CI)

acoustical performance:

- IEQ prerequisite 3 (schools):
 - Noise reduction coefficient (NRC) ASTM C423-02a: 0.05
 - Sound absorption coefficient (SAC) ASTM C423-02a: 0.08
 - Sound transmission class (STC) ASTM E492-04: 54
 - Impact sound transmission impact insulation class (ISTC) ASTM E492-96: 55
 - Marmoleum installed on 2.25mm Corkment over a 6 inch concrete slab - IC 42

indoor environmental quality:

- Low emitting materials (flooring systems) credit 4.3 1 point (NC, schools, CS, CI) option 2

indoor environmental quality:

- Adhesives meet the requirements set forth in the SCAQMD Rule #1168: Forbo L 895, wild rod

manufacturing:

- Facility: Forbo-Nairn Ltd.
- Netherlands

regional extraction/process:

- Composition Tile (MCT):
 - Size: 13" x 13" approx. (33 cm x 33 cm)
 - Thickness: 0.080" (2.0 mm)

sustainable attributes:

- 100% USDA Certified Biobased Product

innovation & design:

- Smart™: Sustainable Products Standard

physical properties:

- Marmoleum® Dual Tile:
 - Size: 13" x 13" approx. (33 cm x 33 cm)
 - Thickness: 0.110" (2.5 mm)

recycled content:

- Pre-consumer (post-industrial)*: 46.5% (wood flour, tall oil)
- Post-consumer: 0%

rapidly renewable materials:

- 23% by weight: Linseed oil, pine resin

PBT source reduction:

- Pilot credit 2: 1 point (NC, schools, CS, CI)

acoustical performance:

- IEQ prerequisite 3 (schools):
 - Noise reduction coefficient (NRC) ASTM C423-02a: 0.05
 - Sound absorption coefficient (SAC) ASTM C423-02a: 0.06
 - Sound transmission class (STC) ASTM E492-04: 55
 - Impact sound transmission impact insulation class (ISTC) ASTM E492-96: 55
 - Marmoleum installed on 2.25mm Corkment over a 6 inch concrete slab - IC 42
 - Marmoleum over a wood joist construction - IK 51

indoor environmental quality:

- Low emitting materials (flooring systems) credit 4.3 1 point (NC, schools, CS, CI)

indoor environmental quality:

- Adhesives meet the requirements set forth in the SCAQMD Rule #1168: Forbo T 940, Sustain 885m

regional material:

- Materials & resources credit 5: 1-2 points (NC, schools, CS, CI)

regional extraction/process:

- Extraction location:
 - England: Tall oil
 - Germany: Gum resin
 - Indonesia: Wood flour
 - Germany: Limestone
 - Germany: Pigment
 - Bangladesh: Jute
 - The Netherlands: Topshield finish (water-based)

sustainable attributes:

- 100% USDA Certified Biobased Product

innovation & design:

- Smart™: Sustainable Products Standard

physical properties:

- Marmoleum® Composition Tile (MCT):
 - Size: 13" x 13" approx. (33 cm x 33 cm)
 - Thickness: 0.080" (2.0 mm)
Marmoleum® Decibel

Physical Properties:
- **Width:** 79” (2 meters)
- **Length:** 105 linear feet (32 linear meters)
- **Gauge:** 0.13” (3.5 mm)

Recycled Content:
- Materials & resources credit 1-2 points (NC, schools, CS, CI)
- Pre-consumer (post-industrial)*
 - 41.7% (waste wood, tall oil)
- Post-consumer
 - 0%

Rapidly Renewable Materials:
- Materials & resources credit 1 point (NC, schools, CS, CI)
- 27.5% by weight
 - Laminated pine, pine resin, jute

PBTS Source Reduction:
- Pilot Credit 2
 - 1 point (NC, schools, CS, CI)

Acoustical Performance:
- IEQ prerequisite 3 (schools)

Indoor Environmental Quality:
- Low emitting materials (flooring systems) credit 4.3
 - 1 point (NC, schools, CS, CI)
 - Option 2

Regional Material:
- Materials & resources credit 1-2 points (NC, schools, CS, CI)

Regional Extraction/Process:
- **Ingredients:**
 - Linseed oil (flax)
 - Tallow oil
 - Gum resin
 - Wood flour
 - Limestone
 - Polyethylene
- **Rosehip finish (water-based):**
 - Canada
 - United States
 - Germany
 - India, Bangladesh
 - The Netherlands

Sustainable Attributes:
- 89.9% bio-based content (Radiconanalyses conducted by Iowa State University, January 30, 2009)

Innovation & Design:
- Sustainable certifications
 - 1 point

Bulletin Board®

Physical Properties:
- **Width:** 48” (122 cm) or 72” (183 cm)
- **Length:** 90 linear feet approx. (27 linear meters)
- **Gauge:** 0.25” (6.0 mm)

Recycled Content:
- Materials & resources credit 1-2 points (NC, schools, CS, CI)
- Pre-consumer (post-industrial)*
 - 41.9% (cork, tall oil)
- Post-consumer
 - 0%

Rapidly Renewable Materials:
- Materials & resources credit 1 point (NC, schools, CS, CI)
- 87% by weight
 - Laminated pine, pine resin, cork, jute

PBTS Source Reduction:
- Pilot Credit 2
 - 1 point (NC, schools, CS, CI)

Acoustical Performance:
- IEQ prerequisite 3 (schools)

Indoor Environmental Quality:
- Low emitting materials (flooring systems) credit 4.3
 - 1 point (NC, schools, CS, CI)

Regional Material:
- Materials & resources credit 1-2 points (NC, schools, CS, CI)

Regional Extraction/Process:
- **Ingredients:**
 - Linseed oil (flax)
 - Tallow oil
 - Gum resin
 - Wood flour
 - Cork granulate
 - Limestone
 - Polyethylene
- **Gauge:** 0.25” (6.0 mm)
 - Canada
 - United States
 - Germany

Sustainable Attributes:
- 100% bio-based content (Radiconanalyses conducted by Iowa State University, January 30, 2009)

Innovation & Design:
- Sustainable certifications
 - 1 point

* All content met criteria of Forbo Marmoleum Bulletin Board®. Please contact Forbo Marmoleum for more info.

Note: Information based on LEED for Schools and LEED for CS/CI. Please contact Forbo Marmoleum for more info.
Innovation & Design

- **Marmoleum® Sustain Wall Panel**
 - **Ingredient Extraction Location**: Marmoleum sheet - The Netherlands, NDF Backer - Arkansas, USA, Phenolic Backer - Texas, USA
 - **Regional Specific Environmental Priority**: Regional Bonus Credit 1-1.4
 - **Sustainable Certifications**: 1 point

- **Marmoleum® Click**
 - **Ingredient**: 78.0% by weight
 - **Sustainable Certifications**: 1 point

Indoor Environmental Quality

- **PBT Source Reduction**: 1 point (NC, schools, CS, CI) option 2
 - **Acoustical Performance**: Marmoleum Click with Vapor Barrier
 - Noise reduction coefficient (NRC): ASTM C423-02a + 0.05
 - Sound absorption coefficient (SAC): ASTM C423-02a + 0.04
 - Sound transmission class (STC): ASTM E423-04 + 51
 - Impact sound transmission impact insulation class (RC): ASTM E423-06

Physical Properties

- **Marmoleum® Sustain Wall Panel**
 - **Physical Properties**: 38” x 95” for material that will run horizontal square dimensions, 1-7/8” for material that will run vertical square dimensions
 - **Recycled Content**: 77% (wood flour, tall oil)

- **Marmoleum® Click**
 - **Physical Properties**: approx. 12” x 36” (1000 mm x 900 mm)
 - **Square Dimensions**: approx. 12” x 12” (1000 mm x 100 mm)
 - **Surface**: 2 mm Marmoleum
 - **Backing**: 1 mm cork

Recycling

- **Recycled Content**:
 - **Marmoleum® Sustain Wall Panel**: 77% (wood flour, tall oil)
 - **Marmoleum® Click**: 8.3% by weight

Indoor Emissions

- **Carb Phase 2 Emission Standard**: 98% bio-based content (Radiocarbon Analysis conducted by Iowa State University, January 10, 2009)

Regional Material

- **Regional Material**: 6.8 mm HDF
 - **Sustainable Certifications**: Smart™ Sustainable Products Standard

Collaborative for High Performance Schools

- **Low Emitting Materials Section 01350**: Low Emitting Materials Table (LEM) listed
- **Pilot Credit**: 1 point (NC, schools, CS, CI) option 2

Priorities

- **Regional Extraction/Process**: 1 point (NC, schools, CS, CI)
 - **Sustainable Attributes**: SMaRT © Sustainable Products Standard - platinum level certification see Forbo sales rep for details

Notes

- Information is based on Life Cycle Assessment (LCA) data • www.forboflooringNA.com
- Information is based on Life Cycle Assessment (LCA) data • www.forboflooringNA.com
Sustainable attributes:

- Water-based finish: The Netherlands
- Paper: Germany
- Pigments: Germany
- Limestone: Germany
- Tall oil: United States

Regional extraction/process:

- Ingredient: Extraction location
 - Linseed oil (flax): Canada
 - Tall oil: United States
 - Gum rosin: Indonesia
 - Wood flour: Germany
 - Limestone: Germany
 - Pigments: Germany
 - Paper: Germany
 - Water-based finish: The Netherlands

Recycled content:

- Pre-consumer (post-industrial)*: 10.5% (wood flour, tall oil)
- Post-consumer: 0%

Acoustical performance:

- Noise reduction coefficient (NRC) ASTM C423-02a: 0.10 (sheet) / 0.10 (tile)
- Sound absorption coefficient (SAA) ASTM C423-02a: 0.07 (sheet) / 0.08 (tile)

Construction waste mgmt.:

- Reclamation/recycling via CARE

Physical properties:

- Width: .72” (18.3 cm)
- Length: 98.4” (250 meters)
- Thickness: 0.17” (4.3 mm)
- Weight: 20’ x 20’ approx. (50 cm x 50 cm)
Nuway Grid

Tuftguard, Tuftguard HSD, Grid

Physical properties:
- **Tensile strength:** 78.74" (2 meters)
- **Resilience:** 90.22 feet (27.5 meters)
- **Seam strength:** 0.394" (10 mm)
- **Seam quality:** 0.080" (2.0 mm)

Construction waste mgmt:
- **Recycled content:**
 - **Pre-consumer:** 97% Nuway Tuftguard, Tuftguard HSD
 - **Post-consumer:** 00% Coral

Indoor environmental quality:
- **Low emitting materials:**
 - **Flooring systems:** credit 4
 - **Flooring systems:** credit 4.1

Material:

<table>
<thead>
<tr>
<th>Material</th>
<th>Eternal Classic and Marble</th>
<th>Eternal Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical properties:</td>
<td>Width: 79" (2 meters)</td>
<td>Width: 79" (2 meters)</td>
</tr>
<tr>
<td></td>
<td>Length: 82' (25 meters)</td>
<td>Length: 82' (25 meters)</td>
</tr>
<tr>
<td></td>
<td>Gauge: 0.080" (2.0 mm)</td>
<td>Gauge: 0.080" (2.0 mm)</td>
</tr>
</tbody>
</table>

Regional extraction/process:
- **Ingredient:**
 - PVC emulsion resin A
 - PVC emulsion resin B
 - PVC suspension resin A
 - PVC suspension resin B
 - PVC suspension resin C
 - Calcium carbonate
 - Stabilizer
 - Alkali benenate
 - Fatty acid ester
 - Titanium dioxide

Regional material:
- **Manufacturing:**
 - Forbo Flooring
 - United Kingdom

Regional extraction/process:
- **Extraction location:**
 - France
 - Germany
 - Belgium
 - Hungary
 - Norway
 - Italy
 - United Kingdom
 - Indonesia
 - Germany
 - The Netherlands

Note: Information is based on Life Cycle Assessment (LCA) data. - www.foreboflooring.com
Eternal Step SR / Eternal Step SR Studded (formerly Tractionstep Slip-Resistant)

physical properties:
- width: 79" (2 meters)
- length: 83" (2.1 meters)
- gauge: 0.080" (2.0 mm)

recycled content:
- post-consumer (post-industrial)**: 0.0%
- post-consumer**: 0%

indoor environmental quality:
- low emitting materials (flooring systems) credit 4.3 1 point (NC, schools, CS, CI) option 2

regional material:
- materials & resources credit 5 1-2 points (NC, schools, CS, CI)

regional extraction/process:
- ingredient: masterbatch
- extraction location: Forbo Novilon BV, The Netherlands

ingredient extraction location
- PVC emulsion resin A: Coevorden, The Netherlands
- PVC emulsion resin C: Germany
- PVC suspension resin A: Belgium
- PVC suspension resin B: Germany
- plastizer: Germany
- plasticizer: Estonia
- alkyl benzoate: Belgium
- carboxylic acid esters: Germany
- CaCO3 (calcium carbonate): Norway
- stabilizer: United Kingdom
- CaO (calcium oxide): Germany
- PVA resins: The Netherlands
- glass microspheres: The Netherlands

material:
- Forbo Adhesives
- Sustain 885m, L 885, V 885, FRS 885, FRT 905, C 990, 650, T 940, L 910W

recycled content:
- post-consumer (post-industrial)**: 0%
- post-consumer**: 0%

indoor environmental quality:
- low emitting materials (adhesives & sealants) credit 4.1 1 point (NC, schools, CS, CI)

regional material:
- materials & resources credit 5 1-2 points (NC, schools, CS, CI)

regional extraction/process:
- ingredient: stabilizer
- extraction location: Facilty: Forbo-Novilon BV, Coevorden, The Netherlands

ingredient extraction location
- PVC emulsion resin A: France
- PVC emulsion resin B: Germany
- PVC suspension resin C: Hungary
- plastizer: Germany
- plastizer: Estonia
- alkyl benzoate: Belgium
- carboxylic acid esters: Germany
- CaCO3 (calcium carbonate): Norway
- stabilizer: United Kingdom
- CaO (calcium oxide): Germany
- PVA resins: The Netherlands
- glass microspheres: The Netherlands

material:
- Colorex® SD/EC
- physical properties:
 - tile size: 24.2" x 24.2" approx. (61.5 cm x 61.5 cm)
 - gauge: 0.080" (2.0 mm)

recycled content:
- post-consumer (post-industrial)**: 51.0%
- post-consumer**: 0%

indoor environmental quality:
- low emitting materials (flooring systems) credit 4.3 1 point (NC, schools, CS, CI) option 2

regional material:
- materials & resources credit 5 1-2 points (NC, schools, CS, CI)

regional extraction/process:
- ingredient: stabilizer
- extraction location: Facility: VPI Corporation, Shelbyville, WI

ingredient extraction location
- PVC: Germany
- plastizer: France
- titanium oxide (TiO2): Germany
- CaO (calcium oxide): Italy
- stabilizer: Italy
- binder (chip coating): Germany
- masterbatch: Italy
- lubricants: Italy
- conductive element: Belgium

material:
- Forbo Wall Base
- physical properties:
 - feet per carton: 4’ wall base = 120 linear feet per carton
 - 6’ wall base = 96 linear feet per carton
 - style: 1/8”
 - gauge: 0.080”

recycled content:
- post-consumer (post-industrial)**: 32.0%
- post-consumer**: 0%

indoor environmental quality:
- low emitting materials (adhesives & sealants) credit 4.1 1 point (NC, schools, CS, CI)

regional material:
- materials & resources credit 5 1-2 points (NC, schools, CS, CI)

regional extraction/process:
- ingredient: stabilizer
- extraction location: Mississippi, United States

ingredient extraction location
- neoprene: Mexico
- polyurethane: United States
- cellulose: Mexico
- stabilizer: United States
- lubricants: United States
- conductive element: United States

material:
- Forbo Adhesives
- Sustain 885m, L 885, V 885, FRS 885, FRT 905, C 990, 650, T 940, L 910W

recycled content:
- post-consumer (post-industrial)**: 0%
- post-consumer**: 0%

indoor environmental quality:
- low emitting materials (adhesives & sealants) credit 4.1 1 point (NC, schools, CS, CI)

regional material:
- materials & resources credit 5 1-2 points (NC, schools, CS, CI)

regional extraction/process:
- ingredient: stabilizer
- extraction location: Mississippi, United States

ingredient extraction location
- neoprene: Mexico
- polyurethane: United States
- cellulose: Mexico
- stabilizer: United States
- lubricants: United States
- conductive element: United States

Note: The information is based on Life Cycle Assessment (LCA) data from Forbo Flooring Systems.
Many manufacturers think that listing the LEED® credits that they contribute to, or in some cases "think" they contribute to is enough. On the surface, this can make many products look to be equally suited for these LEED® projects. That is not necessarily the case when it comes to those LEED® credits that are financially based, such as Materials & Resource credits that involve Recycled Content and Rapidly Renewable Materials. The chart below offers a comparison of financial contribution for various materials based on an average project. The chart includes the approximate total contribution along with an approximate contribution per square foot. The pricing is based on average sale price of material including contractor mark-up for material only. Your contribution could be different depending on variables such as sell price, contractor markup, GC markup and aggressiveness of the bidding environment.

This chart is only meant as a guideline and final contribution will be determined as part of the submittal process based on the above variables for your actual project.

Materials & Resources Credit 4
1-2 points (NC, Schools, CS, CI)

Recycled Content

<table>
<thead>
<tr>
<th>Material/Type</th>
<th>Pre-consumer</th>
<th></th>
<th>Post-consumer</th>
<th></th>
<th>Pre- & Post-consumer</th>
<th></th>
<th>Total Contribution</th>
<th></th>
<th>Contribution per ft²</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmoleum Sheet</td>
<td>46.5%</td>
<td>$5,623 - $6,172</td>
<td>0.0%</td>
<td>$0</td>
<td>$5,623 - $6,172</td>
<td>0.0%</td>
<td>$0</td>
<td>33.0%</td>
<td>$7,980 - $9,040</td>
<td>$0.80 - $0.90</td>
</tr>
<tr>
<td>Marmoleum Composition Sheet (MCS)</td>
<td>46.5%</td>
<td>$4,772 - $5,408</td>
<td>0.0%</td>
<td>$0</td>
<td>$4,772 - $5,408</td>
<td>0.0%</td>
<td>$0</td>
<td>33.0%</td>
<td>$6,773 - $7,576</td>
<td>$0.68 - $0.77</td>
</tr>
<tr>
<td>Marmoleum Decibel</td>
<td>41.7%</td>
<td>$6,613 - $7,971</td>
<td>0.0%</td>
<td>$0</td>
<td>$6,613 - $7,971</td>
<td>0.0%</td>
<td>$0</td>
<td>27.5%</td>
<td>$11,359 - $12,874</td>
<td>$1.14 - $1.29</td>
</tr>
<tr>
<td>Generic: Sheet Vinyl</td>
<td>5.0%</td>
<td>$663 - $752</td>
<td>0.0%</td>
<td>$0</td>
<td>$663 - $752</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Forbo Smargrid/Tractionstop</td>
<td>15.0%</td>
<td>$1,990 - $2,255</td>
<td>0.0%</td>
<td>$0</td>
<td>$1,990 - $2,255</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Forbo Eternal</td>
<td>15.0%</td>
<td>$1,990 - $2,255</td>
<td>0.0%</td>
<td>$0</td>
<td>$1,990 - $2,255</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Generic: Rubber Sheet Flooring</td>
<td>5.0%</td>
<td>$950 - $1,077</td>
<td>0.0%</td>
<td>$0</td>
<td>$950 - $1,077</td>
<td>0.0%</td>
<td>$0</td>
<td>10.0%</td>
<td>$3,800 - $4,307</td>
<td>$0.38 - $0.43</td>
</tr>
<tr>
<td>Forbo Flotex Sheet</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Forbo Carpet</td>
<td>5.0%</td>
<td>$974 - $1,103</td>
<td>2.0%</td>
<td>$579 - $583</td>
<td>$1,558 - $1,986</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Forbo Flotex Tile</td>
<td>43.0%</td>
<td>$8,372 - $9,489</td>
<td>0.0%</td>
<td>$0</td>
<td>$8,372 - $9,489</td>
<td>0.0%</td>
<td>$0</td>
<td>2.0%</td>
<td>$6,872 - $9,489</td>
<td>$0.84 - $0.95</td>
</tr>
<tr>
<td>Generic: Carpet Tile</td>
<td>15.0%</td>
<td>$2,446 - $2,772</td>
<td>2.0%</td>
<td>$562 - $579</td>
<td>$2,446 - $2,772</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$2,446 - $2,772</td>
<td>$0.31 - $0.35</td>
</tr>
<tr>
<td>Dual Tile</td>
<td>46.5%</td>
<td>$8,835 - $10,113</td>
<td>0.0%</td>
<td>$0</td>
<td>$8,835 - $10,113</td>
<td>0.0%</td>
<td>$0</td>
<td>23.0%</td>
<td>$8,740 - $9,065</td>
<td>$0.87 - $0.99</td>
</tr>
<tr>
<td>Marmoleum Composition Tile (MCT)</td>
<td>46.5%</td>
<td>$5,443 - $6,169</td>
<td>0.0%</td>
<td>$0</td>
<td>$5,443 - $6,169</td>
<td>0.0%</td>
<td>$0</td>
<td>23.0%</td>
<td>$5,385 - $6,103</td>
<td>$0.54 - $0.61</td>
</tr>
<tr>
<td>Marmoleum Click 2</td>
<td>78.0%</td>
<td>$17,849 - $20,228</td>
<td>0.0%</td>
<td>$0</td>
<td>$17,849 - $20,228</td>
<td>1.7%</td>
<td>$2.62</td>
<td>8.3%</td>
<td>$3,798 - $4,305</td>
<td>$0.38 - $0.43</td>
</tr>
<tr>
<td>Forbo Colorex ESD Tile</td>
<td>36.0%</td>
<td>$6,662 - $7,800</td>
<td>0.0%</td>
<td>$0</td>
<td>$6,662 - $7,800</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$6,662 - $7,800</td>
<td>$0.50 - $0.57</td>
</tr>
<tr>
<td>Generic: VCT</td>
<td>5.0%</td>
<td>$191 - $217</td>
<td>0.0%</td>
<td>$0</td>
<td>$191 - $217</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$191 - $217</td>
<td>$0.21</td>
</tr>
<tr>
<td>Generic: Rubber Tile Flooring</td>
<td>5.0%</td>
<td>$950 - $1,077</td>
<td>0.0%</td>
<td>$0</td>
<td>$950 - $1,077</td>
<td>0.0%</td>
<td>$0</td>
<td>10.0%</td>
<td>$3,800 - $4,307</td>
<td>$0.38 - $0.43</td>
</tr>
<tr>
<td>Generic: BioBased Tile</td>
<td>10.0%</td>
<td>$1,171 - $1,327</td>
<td>0.0%</td>
<td>$0</td>
<td>$1,171 - $1,327</td>
<td>0.0%</td>
<td>$0</td>
<td>2.0%</td>
<td>$468 - $531</td>
<td>$0.05 - $0.05</td>
</tr>
<tr>
<td>Forbo Entrance Systems Nuway</td>
<td>6.0%</td>
<td>$191 - $216</td>
<td>17.9%</td>
<td>$1,137 - $1,289</td>
<td>$1,328 - $1,505</td>
<td>$11.06 - $12.54</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Forbo Entrance Systems Nuway HD</td>
<td>9.7%</td>
<td>$431 - $489</td>
<td>29.0%</td>
<td>$2,579 - $2,923</td>
<td>$3,011 - $3,412</td>
<td>$25.09 - $28.43</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Forbo Entrance Systems Grid</td>
<td>15.6%</td>
<td>$374 - $429</td>
<td>46.8%</td>
<td>$2,246 - $2,546</td>
<td>$2,621 - $2,970</td>
<td>$21.84 - $24.75</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Forbo Entrance Systems Coral</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Forbo Wall Base</td>
<td>32.0%</td>
<td>$559 - $676</td>
<td>0.0%</td>
<td>$0</td>
<td>$559 - $676</td>
<td>0.0%</td>
<td>$0</td>
<td>0.0%</td>
<td>$559 - $676</td>
<td>$0.10 - $0.11</td>
</tr>
<tr>
<td>Marmoleum Plains: Bulletin Board Cork</td>
<td>41.5%</td>
<td>$1,497 - $1,697</td>
<td>0.0%</td>
<td>$0</td>
<td>$1,497 - $1,697</td>
<td>0.0%</td>
<td>$0</td>
<td>87.0%</td>
<td>$6,287 - $7,115</td>
<td>$3.92 - $4.45</td>
</tr>
<tr>
<td>Marmoleum Wall Panels</td>
<td>77.0%</td>
<td>$5,011 - $5,680</td>
<td>0.0%</td>
<td>$0</td>
<td>$5,011 - $5,680</td>
<td>0.0%</td>
<td>$0</td>
<td>10.7%</td>
<td>$1,393 - $1,578</td>
<td>$0.58 - $0.66</td>
</tr>
<tr>
<td>Marmoleum Plains: Desk Top</td>
<td>30.5%</td>
<td>$36 - $41</td>
<td>0.0%</td>
<td>$0</td>
<td>$36 - $41</td>
<td>0.0%</td>
<td>$0</td>
<td>29.0%</td>
<td>$69 - $78</td>
<td>$0.58 - $0.65</td>
</tr>
<tr>
<td>Corkmint Underlayment</td>
<td>30.0%</td>
<td>$2,529 - $2,867</td>
<td>0.0%</td>
<td>$0</td>
<td>$2,529 - $2,867</td>
<td>0.0%</td>
<td>$0</td>
<td>83.0%</td>
<td>$13,996 - $15,862</td>
<td>$1.40 - $1.59</td>
</tr>
</tbody>
</table>

Forbo is a founding organizational member of the USGBC and supports the LEED® green building certification program as a voluntary, consensus-based national rating system for buildings designed, constructed and operated for improved environmental and human health performance.

Just because a product brochure or tradeshow booth displays the USGBC logo, it does NOT mean that the product or service is endorsed by the USGBC or that it is certified under any LEED® certification system.

USGBC answers the question "Can products be certified under LEED®?" this way: No, LEED® applies to green building projects. Individual products can contribute to points under the certification system; LEED® criteria are performance-based. In attempting to meet these requirements, LEED® practitioners identify products that have desired attributes. However, some LEED® criteria require specific product data as part of a successful submittal.
LEED®, the leading rating system globally for the design and construction of more sustainable buildings, has spawned an era whereby manufacturer’s product design & development, and even more unfortunate, marketing, has been driven (sometimes erroneously) by the need to “generate contributions towards LEED® points.” The onslaught of products offering sustainable attributes that were relatively unaudited, with non-transparent supply chains and non-verifiable chains of custody, containing ignorance-based claims has created a confusing landscape that in many cases has reduced the marketplace to an over-priced validation of the status quo.

The market perception that “sustainable” equals “more expensive” is erroneous. For a manufacturer, sustainability is as important to integrate into the entire product design and production process as quality control. When quality control was an afterthought consisting of an inspection at end of line, it was additional cost. When quality control was integrated throughout the design/development, and manufacturing process, it became a cost savings. The same is true of sustainability. When sustainability is an “add-on” attribute such as adding a bio-based component to a chemical based product, or creating a “backdoor third-party” process for calling production scrap in backings “recycled content”, you only compromise the cost and integrity of the intended outcome. This is the reality of the use of “products with sustainable attributes.”

Forbo believes in the design and manufacture of “sustainable products”. There is no more vivid living example of this than Marmoleum. The sustainability of Marmoleum from “field to field” (Flax field to composting) is the most transparent and sustainable of any flooring material. As such, Marmoleum carries more third-party, independent, LCA (multi-attribute) based environmental certifications than any other flooring material. Marmoleum has, through clear third party, publicly disclosed, verifiable documentation, the lowest environmental footprint of any manufactured flooring material as of the printing of this brochure. Sustainability has been integrated into every step of the process, from supply chain, through manufacturing, to installation and use, and finally end of life. But what about cost? It is no coincidence that through our MCT & MCS products, Marmoleum with Topshield also carries the lowest first cost of any occupancy-ready flooring material. The beauty of Marmoleum is that sustainability is an assumed attribute and it can compete very successfully in an aspirational world where sustainability is an assumed characteristic, not a marketing trend. This is the benefit of being a “sustainable product.”

Further, Forbo strives to be a “sustainable manufacturer”. We do not want to be a manufacturer that has one product platform (i.e. Marmoleum) that is sustainable, but rather one that recognizes that our entire product portfolio has to have the best environmental profile possible. As a case in point, in October 2008 Forbo acquired Bonar Floors and with that acquisition came the integration of Flotex into our product portfolio. Flotex is the most durable, maintainable alternative to textile flooring and at the time of acquisition carried almost every meaningful environmental certification for textile flooring available. In truth, it’s environmental profile was not something we could immediately be proud of. We quickly focused resources on it and in less than a years time made an average of more than 10% improvement in the overall products environmental footprint. In the end, it carries no additional certifications or is recognized any different, but we know that we have made progress and have identified opportunities to make a lot more progress in the future. We will not make claims here of how it will improve in the future, we will only detail what we have already accomplished.

Flotex Tile Improvements
Abiotic Depletion Potential . -1.46%
Acidification Potential . -2.59%
Eutrophication Potential . -0.33%
Ozone Layer Depletion Potential . -6.61%
Photochemical Ozone Creation Potential . -0.96%
Net Global Warming Potential . -1.54%
Total LCA-based Impacts . -13.50%

Flotex Sheet also saw similar improvements.

It is this element of transparency that is critical in the step to being a “sustainable manufacturer”. We hope the information provided in the prior pages to accurately and openly document ALL our products and processes in the format (content and monetization) as prescribed by LEED® makes our commitment clear.
Sustainable Design
Moving towards Integrated Design in a Disintegrated World

Incorporating sustainability into projects, codes, and governing principles is now seen by many to be of increasing relevance and even more, a basic framework for understanding our relationship with life on this planet. In the process of thinking about and practicing sustainability – from a building perspective in this article - these two questions will need to be addressed:

How far do we take it?
How far do we do it?

“LEED® is like a set of training wheels to help people move to higher levels of systems thinking.”

Sustainable Design

How do we get our hands around that? It’s actually pretty simple. To get a general impression of some practice or product – whether it is more or less sustainable than some alternative – we need to lift our heads out of our immediate sphere of action. This requires that we follow the implications of the practice or product logically. What was needed to produce this product? What happens to it after you’re done using it? Take water for example. Where does it come from? Rain. Can you drink the rain? If yes, why aren’t you drinking it from your roof? If no, from where do you get it? A well. Where does the well get its water? The rain. If you can’t drink the rain, what makes it clean in the well? The earth. What kind of earth is required to clean the water? Healthy earth. What makes the earth healthy? Habitat – microbes, animals, plants in healthy diversity. So it seems we need habitat to create fresh water. Not many of us think of this when we have readily available tap water but this is a critical transition in the expense of fresh water for our future.

Even though thinking in systems seems like common sense - once you learn the knack and know what kind of questions to ask it, in fact, it does require a change in what we think is important and value. Change in our thinking practice can happen by slow evolution or in spurts, with bursts of understanding supported by training or asking questions of experts. In 2000 the U.S. Green Building Council officially launched the LEED® Green Building Rating System. It is a grading system that assigns points and assigns levels of performance to various criteria relating to our health and the health of the ecosystem. These points are grouped in general categories of energy and atmosphere, community issues; habitat; water quality and conservation; material resources; and the quality of our indoor environment including the issues of persistent toxics and pollutants.

The purpose of this rating system is to put these issues in front of us as a grouped system. The LEED® system grades a client and design team's willingness to reduce impact in these broad areas. It has been very successful in its impact on the marketplace. The danger is that users think that LEED® helps create sustainable design. It does not. It helps people create buildings that have some features that lead toward a sustainable future. LEED® is like a set of training wheels to help people move to higher levels of systems thinking. It is a code to gauge performance of those at an entry level of green design and the people who are ready to ask tough questions such as: OK, I understand what LEED® is about, what’s the next level? Indeed, that’s the question LEED® is meant to inspire. This is the evolutionary beginning to deeper systems thinking. In fact, one can’t really do a LEED® building cost effectively without a reasonable level of integrated systems thinking. The last section of this article addresses a summary of this process.

So where to after LEED®? One might think that we simply need to do better and set higher performance benchmarks. Instead of saving 30% of our energy use compared to an energy code, the next step may be achieving a 70% improvement. This is certainly an important improvement but it is sufficient to reach a sustainable condition? The answer is: any approach that limits the damage is important but insufficient. It is essential that we begin to look at the earth and its life support systems not as mechanical constructs that we can manage by creating uniform conditions but as living and evolving systems of which we are an integral part. In being part of these systems on their own terms – meaning to participate with these systems in their own terms – means it is essential for us to understand that we are a part of evolutionary patterns – birth, life, death, rebirth cycles. We are not above these patterns, nor below them, simply part of them. Until we learn how to swim in these evolutionary patterns, we will continually find ourselves exhausted by kicking against the flow of life that - while damaged for our purposes - overall really are evolutionary patterns – birth, life, death, rebirth cycles. We are not above these patterns, nor below them, simply part of them. Until we learn how to swim in these evolutionary patterns, we will continually find ourselves exhausted by kicking against the flow of life that - while damaged for our purposes - overall really are evolutionary patterns – birth, life, death, rebirth cycles.

It is essential that we begin to look at the earth and its life support systems not as mechanical constructs that we can manage by creating uniform conditions but as living and evolving systems of which we are an integral part. In being part of these systems on their own terms – meaning to participate with these systems in their own terms – means it is essential for us to understand that we are a part of evolutionary patterns – birth, life, death, rebirth cycles. We are not above these patterns, nor below them, simply part of them. Until we learn how to swim in these evolutionary patterns, we will continually find ourselves exhausted by kicking against the flow of life that - while damaged for our purposes - overall really are evolutionary patterns.

How do we realize this?

To realize any movement toward a sustainable condition requires change – change from the conventional way of thinking and doing things. As Albert Einstein said, “Problems cannot be solved at the same level of awareness that created them.” Moving towards sustainability means that we need to move towards more complex systems awareness.

For example, a conventional design process will have the architect design a building to meet typical functional and aesthetic requirements. The architect then sends the design to the mechanical and electrical engineer to make it comfortable and provide adequate light. In a systems design process – an integrative design process – the engineers, architect, and client are designing the building in a joint manner from the very beginning. Instead of simply adding more efficient equipment to the building – which alone can be costly - the engineer may alert the architect that the orientation and fenestration design of the building can alone save more energy than any level of equipment efficiency. Using daylight will further decrease energy costs and add greater quality of life to the building. Integrated decisions usually decrease the cost of the building while increasing its environmental performance.

While most architects and engineers feel they are “systems designers” by the nature of their work in delivering complex buildings – they usually are not. Sustainable design requires a different mindset or mental model. This model is able to look at systems in a more complex way. Instead of looking at just the physical elements of the building, the invisible connections between the elements need to be understood. These invisible connections and patterns, for example, may be manifest in the downstream impact of toxins in building materials, the multiplicity of energy and cost relationships between the many variables in an HVAC system and the building envelope, or the impact on social systems due to logging practices or any raw material extraction. This level of analysis requires a rigorous level of enthusiastic and early engagement from the participants and an understanding of tools used to make these evaluations. Since no one has all of this knowledge themselves, the role of the team takes on great importance, the role of questioning takes on an equal importance in order to elicit answers beyond the conventional.

For teams to embrace this process a different mindset or model is required, a mindset that has the desire to change the way things are done. A mental model that is open and willing drives the successful integration of green design.

A systems approach requires a collaborative approach. The very strength of the integrative approach has in it a potential weakness – it depends on collaboration from the key players – the client, architect, engineers, interior designers, landscape architects. Fostering and working within a collaborative framework is hard because we have been trained to be “experts”. The client expects it and the design team members feel they need to exhibit it. It is necessary to move from being “experts” to being “co-learners.” The basis of a systems approach is the establishment of a network of mutual learning. No one person can answer all the issues that need to be addressed; collective knowledge is far greater than individual knowledge (Boerker).

By far, most successful green projects (i.e., projects that achieved the high environmental goals they originally set out to achieve, within budget) have done so, not because of adding technology and products to the building, but because they had the willingness to focus on the environmental issues – the invisible and critical connections – as essential to the success of the design. They had the willingness to ask many questions about the potential beneficial relationships between ALL the systems in the building, site and region and explore the many different ways to reach toward better ecological integration. The environmental concerns were not secondary, nor were they dominant, just an integral part of the design. The usual “high” answers were never assumed and they were always questioned.

It is the role of the client, should they wish to reach towards cost effective sustainable building solutions, to select design teams (or green building experts) with expertise in integrated design and the design process to optimize systems in a cost effective manner. Even more important than green expertise however is the willingness or attitude of the design team to learn new ways of looking at systems and the willingness to change their design process.

The following is a list of the essential aspects of an effective integrative design process:

1. The Elements of Integrated Design

 1. Client decision maker involvement in the design decision process
 2. Select the right design team (ATTITUDE is critical – i.e. no experts, only co-learners)
 3. Explore possibilities and potential - do not reinforce expectations and simplistic linear problem solving
 4. Design the design process - create a roadmap to map the process so you don’t default to old process patterns
 5. Develop alignment around the deep purpose of the project - between the stakeholders and design team
 6. Focus on the deep objectives of environmental targets. Goals arise out of working on potential (not a check list)
 7. Identify Champions or a Core Team (to hold the aspirations through the project)
 8. Optimization of the design of systems (using evaluation tools and an iterative process in design and schematic design – after this can get an excuse to add green technologies to a project that wasn’t designed with these in mind from the beginning)
 9. Follow through in Construction Process
 10. Commission the project (make sure it performs the way it was designed to perform – just because it’s built doesn’t mean it works)
 11. Maintenance and Monitoring (continues – feedback is essential to maintain performance)

The process to incorporate sustainable thinking in any project is really not that difficult. The difficulty is accepting that the older conventional practices need to be reconsidered. Change is hard for humans. It is the process of changing which is actually the most exciting aspect of reaching towards sustainability. The technologies will always be improving in sometimes subtle and sometimes significant leaps. When we build in a sustainable manner it is the change of perspective, the change of heart, and a fundamental reawakening of an awareness of our relationships to the systems of life that makes all this worthwhile.

How do we move towards more complex systems awareness?

The “difficulty is accepting that the older conventional practices need to be reconsidered.”

Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA

photo: Alexander Fett Photography
Today, put "green building" in a Google™ search and there are 111,000,000 hits; “sustainable products” 8,300,000 hits; myriad of other considerations were collectively sharing and shaping this sphere of influence and consequence. Human health, social equity, economic justice, green job creation, biodiversity, durability, global warming potential, water intensity, and a should be measured in this green frontier. Beyond environmental indicators, factors relating to awareness, the ante was raised on what this rush to respond was a recognition that buildings function as an interrelated web of systems—some readily visible, others not. In this systems view, changing one thing results in a cascade of impacts throughout a web of nested systems.

Many people point to the 1973 Oil Embargo as the “ahah” moment for what we commonly refer to as sick building syndrome and, in a broader sense, as a catalyst for green building. When buildings were leaky, chemical off-gassing from materials was virtually unknown. People may have suffered from long-term, low-dose exposure to a chemical free-for-all, but the correlation between symptoms and causation was obscure. Enter the tight, energy-efficient building, and the correlation was unmistakable. Buildings were making people sick. Moreover, the sense that a process defined the outcome came into sharper focus as the dots connecting cause and effect were extended. New buildings were subject to increasingly stringent building codes and regulations, including the Energy Policy and Conservation Act of 1976. A rush of energy conserving products and materials and renewable energy-based materials equipment was developed and put into commerce. This rush to respond was driven by a singular focus—to reduce reliance on foreign oil by using less energy. Importantly, absent from this rush to respond was a recognition that buildings function as an interrelated web of systems—some readily visible, others not. In this systems view, changing one thing results in a cascade of impacts throughout a web of nested systems.

Process vs. Product: Today, put “green building” in a Google™ search and there are 111,000,000 hits; “sustainable products” 8,300,000 hits; “sustainable manufacturer” 2,640,000 hits. These are enormous numbers! Note there are 42 times as many hits for “green building” as for “sustainable manufacturer.” Rather than optimizing individual systems, the design process optimizes the whole system. In doing so, it embraces the broader sphere of influence and consequence. Single attributes and singular system performance metrics bear a level of recognition boundaries. Rather than optimizing individual systems, the design process optimizes the whole system. In doing so, it embraces the broader sphere of influence and consequence. Single attributes and singular system performance metrics bear a level of importance; however, their individual significance is dwarfed by the magnitude of impacts that occur through the whole system life cycle.

Visibility, Verifiability and Transparency: How can the life cycle become visible, so that decisions are informed and guided by meaningful data—a consumer’s right-to-know for products? While radical transparency for some product groups such as cosmetics and cleaning products is gaining market visibility through efforts such as the GoodGuide™, products that we build with and that significantly define the indoor and ambient environments are only beginning to be the focus of emerging tools such as Pharos. The visibility, verifiability and transparency triumvirate is where the opportunity lies to create an accessible right-to-know platform for the materials economy. This frontier is ripe for coordinated innovation, collaboration and economic stimulation throughout the supply chain. Diverse stakeholder engagement can yield measures and metrics that celebrate transparency and instill an ethic that value for all will result from a process predicated by trust and verify. Such a revolution in the materials economy is possible. Indeed, it is a global imperative: a whole systems approach in which the process and product share equal billing within a context of visibility, verification and transparency and where multi-attribute assessment—design for the whole—guards against single-attribute decision making described in the aforementioned limited albeit well-intentioned energy conserving measures of the 1970s. The collective interest to “make it right” has never been greater. The collective opportunity to support this with honest words and measurable actions is our generation’s to deliver.

Design for the Whole

A crisis can be an opportunity, uniquely positioned to reveal unintended consequences and inconvenient truths. An example is the 1973 Oil Embargo, when members of the Organization of Petroleum Exporting Countries (OPEC) cut supply of oil to the U.S. and other countries in response to the U.S. support of Israel during the 18-day war with Syria and Egypt. Prior to the October ’73 Embargo, the average price of a barrel of oil was $2.70; gasoline at the pump was about 35¢ per gallon in the U.S. Let’s just say that everything changed as the price of a barrel of oil skyrocketed by more than 300% in less than one year.

In response, a mad and noble dash towards energy conservation ensued throughout the nation. Buildings previously designed oblivious to their energy use were tightened up. New buildings were subject to increasingly stringent building codes and regulations, including the Energy Policy and Conservation Act of 1976. A rush of energy conserving products and materials and renewable energy-based materials equipment was developed and put into commerce. This rush to respond was driven by a singular focus—to reduce reliance on foreign oil by using less energy. Importantly, absent from this rush to respond was a recognition that buildings function as an interrelated web of systems—some readily visible, others not. In this systems view, changing one thing results in a cascade of impacts throughout a web of nested systems. Co-Director, Center for Maximum Potential Building Systems

Design for the Whole, by Gail Vittori, LEED® AP BD+C

Visibility, Verifiability and Transparency: How can the life cycle become visible, so that decisions are informed and guided by meaningful data—a consumer’s right-to-know for products? While radical transparency for some product groups such as cosmetics and cleaning products is gaining market visibility through efforts such as the GoodGuide™, products that we build with and that significantly define the indoor and ambient environments are only beginning to be the focus of emerging tools such as Pharos. The visibility, verifiability and transparency triumvirate is where the opportunity lies to create an accessible right-to-know platform for the materials economy. This frontier is ripe for coordinated innovation, collaboration and economic stimulation throughout the supply chain. Diverse stakeholder engagement can yield measures and metrics that celebrate transparency and instill an ethic that value for all will result from a process predicated by trust and verify. Such a revolution in the materials economy is possible. Indeed, it is a global imperative: a whole systems approach in which the process and product share equal billing within a context of visibility, verification and transparency and where multi-attribute assessment—design for the whole—guards against single-attribute decision making described in the aforementioned limited albeit well-intentioned energy conserving measures of the 1970s. The collective interest to “make it right” has never been greater. The collective opportunity to support this with honest words and measurable actions is our generation’s to deliver.

"The visibility, verifiability and transparency triumvirate is where the opportunity lies to create an accessible right-to-know platform for the materials economy.”

Process Elements (Product Life Cycle)

Environmental Impact Categories

A Company’s Environmental Performance needs to be measured across the entire Life Cycle of the product, not just during production and the end of its useful life. The impacts should include all of the Process Elements and the effect of the Process Elements against all of the Impact Categories.

Visibility, Verifiability and Transparency: How can the life cycle become visible, so that decisions are informed and guided by meaningful data—a consumer’s right-to-know for products? While radical transparency for some product groups such as cosmetics and cleaning products is gaining market visibility through efforts such as the GoodGuide™, products that we build with and that significantly define the indoor and ambient environments are only beginning to be the focus of emerging tools such as Pharos. The visibility, verifiability and transparency triumvirate is where the opportunity lies to create an accessible right-to-know platform for the materials economy. This frontier is ripe for coordinated innovation, collaboration and economic stimulation throughout the supply chain. Diverse stakeholder engagement can yield measures and metrics that celebrate transparency and instill an ethic that value for all will result from a process predicated by trust and verify. Such a revolution in the materials economy is possible. Indeed, it is a global imperative: a whole systems approach in which the process and product share equal billing within a context of visibility, verification and transparency and where multi-attribute assessment—design for the whole—guards against single-attribute decision making described in the aforementioned limited albeit well-intentioned energy conserving measures of the 1970s. The collective interest to “make it right” has never been greater. The collective opportunity to support this with honest words and measurable actions is our generation’s to deliver.

Design for the Whole, by Gail Vittori, LEED® AP BD+C

Co-Director, Center for Maximum Potential Building Systems

A crisis can be an opportunity, uniquely positioned to reveal unintended consequences and inconvenient truths. An example is the 1973 Oil Embargo, when members of the Organization of Petroleum Exporting Countries (OPEC) cut supply of oil to the U.S. and other countries in response to the U.S. support of Israel during the 18-day war with Syria and Egypt. Prior to the October ’73 Embargo, the average price of a barrel of oil was $2.70; gasoline at the pump was about 35¢ per gallon in the U.S. Let’s just say that everything changed as the price of a barrel of oil skyrocketed by more than 300% in less than one year.

In response, a mad and noble dash towards energy conservation ensued throughout the nation. Buildings previously designed oblivious to their energy use were tightened up. New buildings were subject to increasingly stringent building codes and regulations, including the Energy Policy and Conservation Act of 1976. A rush of energy conserving products and materials and renewable energy-based materials equipment was developed and put into commerce. This rush to respond was driven by a singular focus—to reduce reliance on foreign oil by using less energy. Importantly, absent from this rush to respond was a recognition that buildings function as an interrelated web of systems—some readily visible, others not. In this systems view, changing one thing results in a cascade of impacts throughout a web of nested systems.

Many people point to the 1973 Oil Embargo as the “ahah” moment for what we commonly refer to as sick building syndrome and, in a broader sense, as a catalyst for green building. When buildings were leaky, chemical off-gassing from materials was virtually unknown. People may have suffered from long-term, low-dose exposure to a chemical free-for-all, but the correlation between symptoms and causation was obscure. Enter the tight, energy-efficient building, and the correlation was unmistakable. Buildings were making people sick. Moreover, the sense that a process defined the outcome came into sharper focus as the dots connecting cause and effect were extended through the life cycle—in shorthand, source, process, use, and re-source and requisite transportation. Additionally, with this heightened awareness, the ante was raised on what should be measured in this green frontier. Beyond environmental indicators, factors relating to human health, social equity, economic justice, green job creation, biodiversity, durability, global warming potential, water intensity, and a myriad of other considerations were collectively sharing and shaping this sphere of influence and consequence.

Process vs. Product: Today, put “green building” in a Google™ search and there are 111,000,000 hits; “sustainable products” 8,300,000 hits; “sustainable manufacturer” 2,640,000 hits. These are enormous numbers! Note there are 42 times as many hits for “green building” as for “sustainable manufacturer.” Rather than optimizing individual systems, the design process optimizes the whole system. In doing so, it embraces the broader sphere of influence and consequence. Single attributes and singular system performance metrics bear a level of importance; however, their individual significance is dwarfed by the magnitude of impacts that occur through the whole system life cycle.

Manufacturing is central to delivering sustainable products. Sustainable design is a process of integration within a defined context and recognized boundaries. Rather than optimizing individual systems, the design process optimizes the whole system. In doing so, it embraces the broader sphere of influence and consequence. Single attributes and singular system performance metrics bear a level of importance; however, their individual significance is dwarfed by the magnitude of impacts that occur through the whole system life cycle.